版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市锡北片2024届八上数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列给出的三条线段的长,能组成直角三角形的是()A. B. C. D.2.代数式有意义的条件是()A.a≠0 B.a≥0 C.a<0 D.a≤03.马四匹,牛六头,共价四十八两:马三匹,牛五头,共价三十八两.若设每匹马价a两每头牛价b两,可得方程组是()A. B.C. D.4.如图,△ABC的外角∠ACD的平分线CP与∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP的度数是()A.30°; B.40°; C.50°; D.60°.5.已知直线y=-2x+3和直线y=kx-5平行,则k的值为()A.2 B.-2 C.3 D.无法确定6.已知,,则()A. B. C. D.7.下列各组数中,不能作为直角三角形的三边长的是()A.7,24,25 B.9,12,15 C.,, D.,,8.4的算术平方根是()A.±4 B.4 C.±2 D.29.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+ B. C. D.310.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+111.下列说法正确的是()A.16的平方根是4 B.﹣1的立方根是﹣1C.是无理数 D.的算术平方根是312.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.G,H两点处 B.A,C两点处 C.E,G两点处 D.B,F两点处二、填空题(每题4分,共24分)13.若y=1是方程+=的增根,则m=____.14.与最简二次根式是同类二次根式,则__________.15.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=_____°.16.分解因式:=________.17.如图,直线(,,为常数)经过,则不等式的解为__________.18.如图,,的垂直平分线交于点,交于点,若,则______°.三、解答题(共78分)19.(8分)先化简再求值:,再从0,-1,2中选一个数作为的值代入求值.20.(8分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.21.(8分)计算:(x+3)(x﹣4)﹣x(x+2)﹣522.(10分)如图1,直线AB交x轴于点A(4,0),交y轴于点B(0,-4),(1)如图,若C的坐标为(-1,,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(2)在(1)的条件下,如图2,连接OH,求证:∠OHP=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连结MD,过点D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.23.(10分)如图,是等边三角形,延长到,使,点是边的中点,连接并延长交于.求证:(1);(2).24.(10分)甲、乙两名战士在相同条件下各射击10次,每次命中的环数如下:甲:8,6,7,8,9,10,6,5,4,7乙:7,9,8,5,6,7,7,6,7,8(1)分别计算以上两组数据的平均数;(2)分别计算以上两组数据的方差.25.(12分)为了解学生课余活动情况.晨光中学对参加绘画,书法,舞蹈,乐器这四个课外兴趣小组的人员分布情况进行调查.并报据收集的数据绘制了两幅不完整的统计阁.请根据图中提供的信息.解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数.(3)如果该校共有300名学生参加这4个课外兴趣小组,而每位教师最多只能辅导本组的20名学生,估计乐器兴趣小组至少需要准备多少名教师?26.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?
参考答案一、选择题(每题4分,共48分)1、D【分析】三角形三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.【题目详解】A、因为12+22≠32,所以三条线段不能组成直角三角形;B、因为22+32≠42,所以三条线段不能组成直角三角形;C、因为52+72≠92,所以三条线段不能组成直角三角形;D、因为32+42=52,所以三条线段能组成直角三角形.故选:D.【题目点拨】本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.2、B【分析】根据二次根式有意义,被开方数为非负数解答即可.【题目详解】∵代数式有意义,∴a≥0,故选:B.【题目点拨】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数.3、B【分析】根据“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两”列出方程组即可.【题目详解】解:若设每匹马价a两,每头牛价b两,则可得方程组:,故选:B.【题目点拨】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.4、C【解题分析】过点P作PE⊥BD于点E,PF⊥BA于点F,PH⊥AC于点H,∵CP平分∠ACD,BP平分∠ABC,∴PE=PH,PE=PF,∠PCD=∠ACD,∠PBC=∠ABC,∴PH=PF,∴点P在∠CAF的角平分线上,∴AP平分∠FAC,∴∠CAP=∠CAF.∵∠PCD=∠BPC+∠PBC,∴∠ACD=2∠BPC+2∠PBC,又∵∠ACD=∠ABC+∠BAC,∠ABC=2∠PBC,∠BPC=40°,∴∠ABC+∠BAC=∠ABC+80°,∴∠BAC=80°,∴∠CAF=180°-80°=100°,∴∠CAP=100°×=50°.故选C.点睛:过点P向△ABC三边所在直线作出垂线段,这样综合应用“角平分线的性质与判定”及“三角形外角的性质”即可结合已知条件求得∠CAP的度数.5、B【分析】根据两直线平行,k相等即可得出答案.【题目详解】∵直线y=-2x+3和直线y=kx-5平行故选:B.【题目点拨】本题主要考查两直线平行,掌握两直线平行时,k相等是解题的关键.6、D【分析】根据同底数幂除法的逆用和幂的乘方的逆用变形,并代入求值即可.【题目详解】解:将,代入,得原式=故选D.【题目点拨】此题考查的是幂的运算性质,掌握同底数幂除法的逆用和幂的乘方的逆用是解决此题的关键.7、C【分析】根据勾股定理依次判断各选项即可.【题目详解】A、,故能构成直角三角形;B、,故能构成直角三角形;C、,故不能构成直角三角形;D、,故能构成直角三角形;故选C.【题目点拨】本题是对勾股定理逆定理的考查,熟练掌握定理是解决本题的关键.8、D【分析】如果一个正数x的平方等于a,即x2=a(x>0),那么这个正数x叫做a的算术平方根.【题目详解】解:4的算术平方根是2.故选D.【题目点拨】本题考查了算术平方根的定义,熟练掌握相关定义是解题关键.9、A【分析】如图,过点D作DF⊥AC于F,由角平分线的性质可得DF=DE=1,在Rt△BED中,根据30度角所对直角边等于斜边一半可得BD长,在Rt△CDF中,由∠C=45°,可知△CDF为等腰直角三角形,利用勾股定理可求得CD的长,继而由BC=BD+CD即可求得答案.【题目详解】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD==,∴BC=BD+CD=,故选A.【题目点拨】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10、B【题目详解】试题解析:A.x2-4=(x+2)(x-2),含有因式(x-2),不符合题意;B.x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C.x2-2x=x(x-2),含有因式(x-2),不符合题意;D.(x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.11、B【分析】分别根据平方根的定义、立方根的定义、无理数的定义以及算术平方根的定义逐一判断即可.【题目详解】解:A.16的平方根是±4,故本选项不合题意;B.﹣1的立方根是﹣1,正确,故本选项符合题意;C.=5,是有理数,故本选项不合题意;D.是算术平方根是,故本选项不合题意.故选:B.【题目点拨】本题主要考查了算术平方根、平方根、立方根、无理数,熟记相关定义是解答本题的关键.12、C【分析】根据三角形的稳定性进行判断.【题目详解】A选项:若钉在G、H两点处则构成了三角形,能固定窗框,故不符合题意;B选项:若钉在A、C两点处则构成了三角形,能固定窗框,故不符合题意;C选项:若钉在E、G两点处则构成了两个四边形,不能固定窗框,故符合题意;D选项:若钉在B、F两点处则构成了三角形,能固定窗框,故不符合题意;故选C.【题目点拨】考查三角形稳定性的实际应用.解题关键是利用了三角形的稳定性,判断是否稳定则看能否构成三角形.二、填空题(每题4分,共24分)13、-1.【解题分析】增根是化为整式方程后产生的不适合分式方程的根.先去分母,然后把y=1代入代入整式方程,即可算出m的值.【题目详解】去分母,可得m(y-2)+3(y-1)=1,把y=1代入,可得m(1-2)+3(1-1)=1,解得m=-1,故答案为-1.【题目点拨】本题考查了分式方程的增根,在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.14、1【分析】先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.【题目详解】解:∵,∴m+1=2,∴m=1.故答案为1.【题目点拨】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.15、1.【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C=180°﹣∠ABC,列方程即可得到结论.【题目详解】∵把一张三角形纸片折叠,使点A、点C都与点B重合,∴∠ABE=∠A,∠CBG=∠C,∵∠A+∠C=180°﹣∠ABC,∵∠ABC=∠ABE+∠CBG+∠EBG,∴∠ABC=∠A+∠C+36°=180°﹣∠ABC+36°,∴∠ABC=1°,故答案为:1.【题目点拨】本题主要考查三角形的内角和定理与图形折叠的性质,根据角的和差关系,列出关于∠ABC的方程,是解题的关键.16、【分析】根据提公因式法即可求解.【题目详解】=故答案为:.【题目点拨】此题主要考查因式分解,解题的关键是熟知因式分解的方法.17、【解题分析】利用一次函数的增减性求解即可.【题目详解】因则一次函数的增减性为:y随x的增大而减小又因一次函数的图象经过点则当时,,即因此,不等式的解为故答案为:.【题目点拨】本题考查了一次函数的图象与性质(增减性),掌握理解并灵活运用函数的性质是解题关键.18、1【分析】根据等边对等角和三角形的内角和定理即可求出∠ABC,然后根据垂直平分线的性质可得DA=DB,从而得出∠A=∠DBA=40°,即可求出.【题目详解】解:∵,∴∠ABC=∠ACB=∵DE垂直平分AB∴DA=DB∴∠A=∠DBA=40°∴∠DBC=∠ABC-∠DBA=1°故答案为:1.【题目点拨】此题考查的是等腰三角形的性质和垂直平分线的性质,掌握等边对等角和线段垂直平分线上的点到这条线段两个端点的距离相等是解决此题的关键.三、解答题(共78分)19、,当时,原式=1【分析】先通分去括号,因式分解,变除为乘,约分得最简分式,然后确定不能取的数值,可取的值代入运算即可.【题目详解】解:∵∴当时,原式=.【题目点拨】本题考查了分式的化简求值,熟知相关运算是解题的关键.20、(1);(2)工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润.【解题分析】(1)利润y(元)=生产甲产品的利润+生产乙产品的利润;而生产甲产品的利润=生产1吨甲产品的利润0.3万元×甲产品的吨数x,即0.3x万元,生产乙产品的利润=生产1吨乙产品的利润0.4万元×乙产品的吨数(2500﹣x),即0.4(2500﹣x)万元.(2)由(1)得y是x的一次函数,根据函数的增减性,结合自变量x的取值范围再确定当x取何值时,利润y最大.【题目详解】(1).(2)由题意得:,解得.又因为,所以.由(1)可知,,所以的值随着的增加而减小.所以当时,取最大值,此时生产乙种产品(吨).答:工厂生产甲产品1000吨,乙产品1500吨,时,能获得最大利润.【题目点拨】这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.21、﹣3x﹣1.【分析】先根据整式的乘法法则算乘法,再合并同类项即可.【题目详解】解:原式==.【题目点拨】本题考查整式的混合运算,解题的关键是熟练掌握混合运算顺序以及相关运算法则.22、(1)P(0,1);(2)证明见解析;(3)不变;1.【分析】(1)利用坐标的特点,得出△OAP≌△OB,得出OP=OC=1,得出结论;
(2)过O分别做OM⊥CB于M点,ON⊥HA于N点,证出△COM≌△PON,得出OM=ON,HO平分∠CHA,求得结论;
(3)连接OD,则OD⊥AB,证得△ODM≌△ADN,利用三角形的面积进一步解决问题.试题解析:(1)由题得,OA=OB=1.【题目详解】解:∵AH⊥BC于H,∴∠OAP+∠OPA=∠BPH+∠OBC=90°,∴∠OAP=∠OBC在△OAP和△OBC中,∴△OAP≌△OBC(ASA),∴OP=OC=1,则点P(0,1)(2)过点O分别作OM⊥CB于M点,ON⊥HA于N点,在四边形OMHN中,∠MON=360°-3×90°=90°,∴∠COM=∠PON=90°-∠MOP在△COM和△PON中,,∴△COM≌△PON(AAS),∴OM=ON,∵HO平分∠CHA,∴;(3)的值不发生改变,理由如下:连结OD,则OD⊥AB,∠BOD=∠AOD=15°,∠OAD=15°,∴OD=AD,∴∠MDO=∠NDA=90°-∠MDA,在△ODM和△AND中,,∴△ODM≌△AND(ASA),∴∴,∴.23、(1)见解析;(2)见解析.【分析】(1)根据等边三角形的性质可知,,从而可得,再利用三角形的内角和可求得,最后根据垂直定义可证得(2)通过添加辅助线构造出,再利用等边三角形的相关性质证得,从而得出,最后根据角所对的直角边等于斜边的一半知,即.【题目详解】(1)∵为等边三角形∴,,∵是边的中点∴∵∴,∴∵,∴∴∴;(2)连接∵为等边三角形∴,,∵是边的中点∴∵∴∴∵在中,∴,∴,即:【题目点拨】本题主要考查了等边三角形的性质,含的直角三角形的性质.第一问再利用三角形的内角和、垂直定义等知识点即可得证;第二问解题关键在于辅助线的添加,构造出含的直角三角形,再利用等边三角形的性质以及等要三角形的判定进一步转化得证最后结论.24、(1)甲:7,乙:7;(1)甲:3,乙:1.1【分析】(1)根据平均数的公式:平均数=所有数之和再除以数的个数;(1)方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算,【题目详解】解:(1)==7;==7;(1)=×[(4-7)1+(5-7)1+1×(6-7)1+1×(7-7)1+1×(8-7)1+(9-7)1+(10-7)1]=3;=×[(5-7)1+1×(6-7)1+4×(7-7)1+1×(8-7)1+(9-7)1]=1.1.【题目点拨】本题考查平均数、方差的定义:一般地设n个数据,x1,x1,…xn的平均数为,则方差S1=[(x1-)1+(x1-)1+…+(xn-)1],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.25、(1)200;(2)图详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年唐山滦南县医院招聘考试真题
- 2023年娄底新化县西河镇招聘考试真题
- 农业产品订货合同示例
- 华南理工大学《实验室安全规范》2021-2022学年第一学期期末试卷
- 华南理工大学《软件体系结构》2022-2023学年期末试卷
- 华南理工大学《计算机控制技术》2021-2022学年期末试卷
- 华南理工大学《婚姻家庭和继承法学》2022-2023学年期末试卷
- 制造业设备合规性检查制度
- 城市建设安全管理方案
- 2024至2030年中国防静电输送带数据监测研究报告
- 广东省珠海市第十六中学2024-2025学年上学期期中质量监测九年级数学试题(无答案)
- 成语积累竞赛试题
- 2024焊接工艺规程
- 2024年巴黎奥运会
- 人教版(2024)七年级全一册体育与健康第6课《识别界限 拒绝性骚扰》教学设计
- 第六单元(整体教学设计)九年级语文上册大单元教学名师备课系列(统编版)
- 基于区块链的车联网安全研究综述
- 《8 课余生活真丰富》教学设计-2024-2025学年道德与法治一年级上册统编版
- 广州医学院攻读临床医学专业学位研究生培养方案
- 新生儿败血症-7
- 统编版(2024新版)道德与法治七年级上册4.1《家的意味》教案
评论
0/150
提交评论