![河北省沽源县2024届八上数学期末质量检测试题含解析_第1页](http://file4.renrendoc.com/view/dad4b1d6c16e72b47e77c323f7369c8b/dad4b1d6c16e72b47e77c323f7369c8b1.gif)
![河北省沽源县2024届八上数学期末质量检测试题含解析_第2页](http://file4.renrendoc.com/view/dad4b1d6c16e72b47e77c323f7369c8b/dad4b1d6c16e72b47e77c323f7369c8b2.gif)
![河北省沽源县2024届八上数学期末质量检测试题含解析_第3页](http://file4.renrendoc.com/view/dad4b1d6c16e72b47e77c323f7369c8b/dad4b1d6c16e72b47e77c323f7369c8b3.gif)
![河北省沽源县2024届八上数学期末质量检测试题含解析_第4页](http://file4.renrendoc.com/view/dad4b1d6c16e72b47e77c323f7369c8b/dad4b1d6c16e72b47e77c323f7369c8b4.gif)
![河北省沽源县2024届八上数学期末质量检测试题含解析_第5页](http://file4.renrendoc.com/view/dad4b1d6c16e72b47e77c323f7369c8b/dad4b1d6c16e72b47e77c323f7369c8b5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沽源县2024届八上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列图标中是轴对称图形的是()A. B. C. D.2.要使在实数范围内有意义,应满足的条件是()A. B. C. D.3.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.24.若,则的值为()A. B. C. D.5.要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图 B.扇形统计图 C.折线统计图 D.统计表6.如果(x+y﹣4)2+=0,那么2x﹣y的值为()A.﹣3 B.3 C.﹣1 D.17.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A的坐标是(a,b),经过第2019次变换后所得的点A的坐标是()A.(﹣a,b) B.(﹣a,﹣b) C.(a,﹣b) D.(a,b)8.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm9.当x时,分式的值为0()A.x≠- B.x=- C.x≠2 D.x=210.一个多边形的外角和等于它的内角和的倍,那么这个多边形从一个顶点引对角线的条数是()条A.3 B.4 C.5 D.6二、填空题(每小题3分,共24分)11.若分式的值为零,则x的值为_____.12.已知xy=3,那么的值为______.13.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为________.14.如图,等边三角形ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为直线l上一动点,则AD+CD的最小值是________.15.如图,将绕着直角顶点顺时针旋转,得到,连接,若,则__________度.16.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则.17.若2x=3,4y=5,则2x﹣2y+1的值为_____.18.如果分式有意义,那么x的取值范围是____________.三、解答题(共66分)19.(10分)(1)如图1,是的中线,,求的取值范围,我们可以延长到点,使,连接(如图2所示),这样就可以求出的取值范围,从而得解,请写出解题过程;(2)在(1)问的启发下,解决下列问题:如图3,是的中线,交于点,交于点,且,求证:.20.(6分)一次函数y1=﹣2x+b的图象交x轴于点A、与正比例函数y2=2x的图象交于点M(m,m+2),(1)求点M坐标;(2)求b值;(3)点O为坐标原点,试确定△AOM的形状,并说明你的理由.21.(6分)如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.22.(8分)问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=,直接写出A、M两点之间的距离.23.(8分)已知,在中,,点为的中点.(1)观察猜想:如图①,若点、分别为、上的点,且于点,则线段与的数量关系是_______;(不说明理由)(2)类比探究:若点、分别为、延长线上的点,且于点,请写出与的数量关系,在图②中画出符合题意的图形,并说明理由;(3)解决问题:如图③,点在的延长线上,点在上,且,若,求的长.(直接写出结果,不说明理由.)24.(8分)某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?25.(10分)(问题解决)一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=1.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.(类比探究)如图2,若点P是正方形ABCD外一点,PA=1,PB=1,PC=,求∠APB的度数.26.(10分)在平面直角坐标系中在图中描出,,,连接AB、BC、AC,得到,并将向右平移5个单位,再向上平移2个单位的得到;作出,使它与关于x轴对称.
参考答案一、选择题(每小题3分,共30分)1、D【题目详解】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.2、C【分析】根据二次根式的被开方数大于等于0列式求解即可.【题目详解】解:根据题意得,x-1≥0,
解得x≥1.
故选:C.【题目点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.3、C【解题分析】过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=1,
∴PE=1.
故选C.4、A【题目详解】∵,∴;故选A.5、C【解题分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【题目详解】折线统计图表示的是事物的变化情况,石城县一周内每天的最高气温的变化情况,宜采用折线统计图.故选:C【题目点拨】此题考查统计图的选择,解题关键在于熟练掌握各种统计图的应用.6、C【解题分析】根据非负数的性质列出关于x、y的二元一次方程组求解得到x、y的值,再代入代数式进行计算即可得解.【题目详解】根据题意得,,由②得,y=3x③,把③代入①得,x+3x﹣4=0,解得x=1,把x=1代入③得,y=3,所以方程组的解是,所以2x﹣y=2×1﹣3=﹣1.故选C.7、A【分析】观察图形,可知每四次对称为一个循环组依次循环,用2019除以4,然后根据商和余数的情况,确定变换后点A所在的象限,即可求解.【题目详解】解:点A第一次关于x轴对称后在第四象限,点A第二次关于y轴对称后在第三象限,点A第三次关于x轴对称后在第二象限,点A第四次关于y轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2019÷4=504余3,∴经过第2019次变换后所得的A点与第三次变换的位置相同,在第二象限,坐标为(﹣a,b).故选:A.【题目点拨】本题考查了轴对称的性质,点的坐标变换规律,认真读题找出每四次对称为一个循环组来解题是本题的关键.8、C【解题分析】设第三边长为xcm,则8﹣3<x<3+8,5<x<11,故选C.9、D【分析】分式的值为的条件是:(1)分子等于零;(2)分母不等于零.两个条件需同时具备,缺一不可.据此可以解答本题.【题目详解】解:∵分式的值为∴∴.故选:D【题目点拨】本题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为这个条件.10、A【分析】设这个多边形有n条边,由题意得方程(n-2)×180=360×2,解方程可得到n的值,然后根据n边形从一个顶点出发可引出(n-3)条对角线可得答案.【题目详解】设这个多边形有n条边,由题意得:(n-2)×180=360×2,解得;n=6,从这个多边形的一个顶点出发的对角线的条数是6-3=3,故答案为:A.【题目点拨】此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.二、填空题(每小题3分,共24分)11、1【分析】由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【题目详解】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.故答案为:1.【题目点拨】本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.12、±2【解题分析】分析:先化简,再分同正或同负两种情况作答.详解:因为xy=3,所以x、y同号,于是原式==,当x>0,y>0时,原式==2;当x<0,y<0时,原式==−2故原式=±2.点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.13、3cm【分析】先根据勾股定理求出AB的长,设CD=xcm,则cm,再由图形翻折变换的性质可知AE=AC=6cm,DE=CD=xcm,进而可得出BE的长,在中利用勾股定理即可求出x的值,进而得出CD的长.【题目详解】是直角三角形,AC=6cm,BC=8cm,
cm,
是翻折而成,
,
设DE=CD=xcm,,
,
在中,,
即,
解得x=3.
故CD的长为3cm.【题目点拨】本题考查的是翻折变换及勾股定理,解答此类题目时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其它线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14、【分析】连接CC´,根据△ABC与△A′BC′均为等边三角形即可得到四边形ABC´C为菱形,因为点C关于直线l对称的点是C´,以此确定当点D与点D´重合时,AD+CD的值最小,求出AC´即可.【题目详解】解:连接CC´,如图所示∵△ABC与△A′BC′均为等边三角形,∴∠A´BC´=∠CAB=60°,AB=BC´=AC,∴AC∥BC´,∴四边形ABC´C为菱形,∴BC⊥AC´,CA=CC´,∠ACC´=180°-∠CAB=120°,∴∠CAC´=(180°-∠ACC´)=(180°-120°)=30°,∴∠C´AB=∠CAB-∠CAC´=30°,∵∠A´=60°,∴∠AC´A´=180°-∠C´AB-∠A´=180°-30°-60°=90°,∵点C关于直线l对称的点是C´,∴当点D与点D´重合时,AD+CD取最小值,∴.故答案为.【题目点拨】本题考查了轴对称——最短路径问题,等边三角形的性质,菱形的判定与性质,解直角三角形等知识.解题的关键是学会利用轴对称解决问题.15、70【分析】首先由旋转的性质,得△ABC≌△A′B′C,然后利用等腰直角三角形的性质等角转换,即可得解.【题目详解】由旋转的性质,得△ABC≌△A′B′C,∴AC=A′C,∠BAC=∠B′A′C,∠ACA′=90°,∴∠CAA′=∠CA′A=45°∵∴∠BAC=25°∴∠BAA′=∠BAC+∠CAA′=25°+45°=70°故答案为:70.【题目点拨】此题主要考查利用全等三角形旋转求解角度,熟练掌握,即可解题.16、a5+5a4b+10a3b2+10a2b3+5ab4+b5【分析】分析题意得到规律,再把这个规律应用于解题.【题目详解】由题意分析可知,a5+5a4b+10a3b2+10a2b3+5ab4+b53故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5考点:找规律-数字的变化17、【分析】直接利用同底数幂的乘除运算法则将原式变形进而计算即可.【题目详解】解:∵2x=3,4y=22y=5,∴2x﹣2y+1=2x÷22y×2=3÷5×2=.故答案为:.【题目点拨】本题考查同底数幂的乘、除法法则,解题的关键是熟练理解:一个幂的指数是相加(或相减)的形式,那么可以分解为同底数幂相乘(或相除)的形式.18、x≠1【解题分析】∵分式有意义,∴,即.故答案为.三、解答题(共66分)19、(1);(2)见解析.【分析】(1)延长到点,使,连接,易证,从而得,根据三角形三边关系,可得,进而即可求解;(2)先证,结合,可得,结合,即可得到结论.【题目详解】(1),(SAS),∴,∴在中,,即:,∴的范围是:;(2)延长到点,使,连接,由(1)知:,,,,,,,.【题目点拨】本题主要考查三角形全等的判定和性质定理,三角形三边的关系,等腰三角形的性质和判定定理,添加辅助线,构造全等三角形,是解题的关键.20、(1)M坐标(2,4);(2)b=8;(3)△AOM是等腰三角形,理由见解析【分析】(1)把点M的坐标代入正比例函数关系式可得关于m的方程,解方程即可求出m,进而可得答案;(2)把(1)题中求得的点M坐标代入一次函数的关系式即可求得结果;(3)易求点A的坐标,然后可根据两点间的距离公式和勾股定理依次求出OA,AM,OM的长,进而可得结论.【题目详解】解:(1)把点M(m,m+2)代入y2=2x得:m+2=2m,解得:m=2,∴点M坐标(2,4);(2)把点M坐标(2,4)代入y1=﹣2x+b中,得:4=﹣2×2+b,解得:b=8;(3)△AOM是等腰三角形.理由:如图,由(2)知,b=8,∴y1=﹣2x+8,令y=0,则x=4,∴A(4,0),∴OA=4,AM=,OM=,∴OM=AM,∴△AOM是等腰三角形.【题目点拨】本题考查了一次函数图象上点的坐标特征、直线与坐标轴的交点、两点间的距离公式和勾股定理等知识,属于常考题型,熟练掌握以上基本知识是解题的关键.21、如:AD=BC,BE∥AF,则DE=CF;理由见解析【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【题目详解】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,,∴△ADF≌△BCE(AAS),∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.【题目点拨】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.22、问题原型:见解析;问题拓展:(1)AC=CM,理由见解析;(2)AM=.【解题分析】根据题意证出△BDE≌△ADC即可得出答案;证出△BEF≌△CMF即可得出答案;(2)连接AM,求出∠ACM=90°,即可求出A【题目详解】问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=AC=.【题目点拨】本题考查的知识点是全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.23、(1)BE=AF;(2)BE=AF,理由见解析;(3).【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF;(3)过点M作MG∥BC,交AB的延长线于点G,同理证明△BMG≌△NMA,得到AN=GB=1,再根据等腰直角三角形求出AG的长,即可求解.【题目详解】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF.(2)BE=AF理由:如图②,连结AD,∵∠BAC=90°,AB=AC,∴∠ABC=∠C=(180°-∠BAC)=(180°-90°)=45°∵BD=AD,AB=AC,∴AD⊥BC,∴∠BAD=∠CAD=∠BAC=×90°=45°,∴∠BAD=∠ABC,∴AD=BD又∠CAD=∠ABC=45°,∴∠DAF=∠DBE=135°∵DE⊥DF,∴∠BDE+∠BDF=90°又AD⊥BC,∴∠ADF+∠BDF=90°,∴∠BDE=∠ADF在△BDE和△ADF中,∴△BDE≌△ADF,∴BE=AF(3)如图③,过点M作MG∥BC,交AB的延长线于点G,∵DA⊥BC,∴AM⊥GM,故△AMG为等腰直角三角形∴GM=AM=2,故AG=2∵同(1)理可得△BMG≌△NMA,∴AN=GB=1,∴=AG-BG=AG-AN=.【题目点拨】本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是熟知全等三角形的判定及等腰三角形的性质.24、规定期限1天;方案(3)最节省【分析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【题目详解】解:设规定期限x天完成,则有:,解得x=1.经检验得出x=1是原方程的解;答:规定期限1天.方案(1):1×1.5=30(万元)方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×1=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钻石画教案完整版本
- 《公务员法》知识考试题库150题(含答案)
- 2025年江苏信息职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年新疆体育职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 幼儿园主题秋游活动策划方案五篇
- 公司居间服务合同模板
- 互联网软件开发及维护合同
- 陶瓷销售合同范本
- 电脑独家代理销售合同
- 贷款第三方担保合同
- 《中国心力衰竭诊断和治疗指南(2024)》解读完整版
- 《档案管理课件》课件
- 2025年中考物理终极押题猜想(新疆卷)(全解全析)
- 胫骨骨折的护理查房
- 抽水蓄能电站项目建设管理方案
- 电动工具培训课件
- 《智能网联汽车智能传感器测试与装调》电子教案
- GB/T 32399-2024信息技术云计算参考架构
- 2025年湖南省长沙市中考数学模拟试卷(附答案解析)
- 五级人工智能训练师(初级)职业技能等级认定考试题库(含答案)
- 企业职务犯罪法制讲座课件
评论
0/150
提交评论