湖南省长沙市浏阳市2024届八上数学期末学业水平测试模拟试题含解析_第1页
湖南省长沙市浏阳市2024届八上数学期末学业水平测试模拟试题含解析_第2页
湖南省长沙市浏阳市2024届八上数学期末学业水平测试模拟试题含解析_第3页
湖南省长沙市浏阳市2024届八上数学期末学业水平测试模拟试题含解析_第4页
湖南省长沙市浏阳市2024届八上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市浏阳市2024届八上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列计算正确的是()A.3x﹣2x=1 B.a﹣(b﹣c+d)=a+b+c﹣dC.(﹣a2)2=﹣a4 D.﹣x•x2•x4=﹣x72.如图,已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,下列画法中错误的是()A. B.C. D.3.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A. B.C. D.4.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况5.王老师乘公共汽车从地到相距千米的地办事,然后乘出租车返回,出租车的平均速度比公共汽车多千米/时,回来时所花的时间比去时节省了,设公共汽车的平均速度为千米/时,则下面列出的方程中正确的是()A. B.C. D.6.等腰三角形的一个角为50°,则它的底角为()A.50° B.65° C.50°或65° D.80°7.张师傅驾车从甲地到乙地匀速行驶,行驶中油箱剩余油量(升)与行驶时间(小时)之间的关系式为,这里的常数“”,“”表示的实际意义分别是()A.“”表示每小时耗油升,“”表示到达乙地时油箱剩余油升B.“”表示每小时耗油升,“”表示出发时油箱原有油升C.“”表示每小时耗油升,“”表示每小时行驶千米D.“”表示每小时行驶千米,“”表示甲乙两地的距离为千米8.下列图形中,是轴对称图形的是()A. B.C. D.9.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()A. B.C. D.10.已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.1011.下列各式不是最简分式的是()A. B. C. D.12.已知点A和点B,以点A和点B为两个顶点作等腰直角三角形,则一共可作出()A.3个 B.4个 C.6个 D.7个二、填空题(每题4分,共24分)13.若分式的值为零,则x的值为________.14.等腰三角形的两边长分别是3和7,则其周长为.15.某学生数学课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例记入总评成绩,则该生数学总评成绩是____分.16.如图所示,在中,,将点C沿折叠,使点C落在边D点,若,则______.17.已知点的坐标为,点的坐标为,且点与点关于轴对称,则________.18.花粉的质量很小.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037毫克可用科学记数法表示为________毫克.三、解答题(共78分)19.(8分)解不等式(组)(1)(2)20.(8分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD.(1)根据作图判断:△ABD的形状是;(2)若BD=10,求CD的长.21.(8分)如图,工厂和工厂,位于两条公路之间的地带,现要建一座货物中转站,若要求中转站到两条公路的距离相等,且到工厂和工厂的距离也相等,请用尺规作出点的位置.(不要求写做法,只保留作图痕迹)22.(10分)如图(1),,,垂足为A,B,,点在线段上以每秒2的速度由点向点运动,同时点在线段上由点向点运动.它们运动的时间为().(1),;(用的代数式表示)(2)如点的运动速度与点的运动速度相等,当时,与是否全等,并判断此时线段和线段的位置关系,请分别说明理由;(3)如图(2),将图(1)中的“,”,改为“”,其他条件不变.设点的运动速度为,是否存在有理数,与是否全等?若存在,求出相应的x、t的值;若不存在,请说明理由.23.(10分)如图1所示的图形,像我们常见的符号——箭号.我们不妨把这样图形叫做“箭头四角形”.探究:(1)观察“箭头四角形”,试探究与、、之间的关系,并说明理由;应用:(2)请你直接利用以上结论,解决以下两个问题:①如图2,把一块三角尺放置在上,使三角尺的两条直角边、恰好经过点、,若,则;②如图3,、的2等分线(即角平分线)、相交于点,若,,求的度数;拓展:(3)如图4,,分别是、的2020等分线(),它们的交点从上到下依次为、、、…、.已知,,则度.24.(10分)如图,,是边的中点,于,于.(1)求证:;(2)若,,求的周长.25.(12分)已知,从小明家到学校,先是一段上坡路,然后是一段下坡路,且小明走上坡路的平均速度为每分钟走60m,下坡路的平均速度为每分钟走90m,他从家里走到学校需要21min,从学校走到家里需要24min,求小明家到学校有多远.26.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上(但不与A点重合),求t的值.

参考答案一、选择题(每题4分,共48分)1、D【分析】直接利用积的乘方运算法则以及去括号法则分别化简得出答案.【题目详解】解:A、3x﹣2x=x,故此选项错误;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故此选项错误;C、(﹣a2)2=a4,故此选项错误;D、﹣x•x2•x4=﹣x7,故此选项正确.故选:D.【题目点拨】本题考查了积的乘方运算法则以及去括号法则,正确掌握相关运算法则是解题关键.2、A【分析】根据经过直线外一点作已知直线的方法即可判断.【题目详解】解:已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,画法正确的是B、C、D选项,不符合题意.A选项错误,符合题意;故选:A.【题目点拨】本题考查了作图基本作图,解决本题的关键是掌握经过一点作已知直线的垂线的方法.3、C【分析】给出知识树,分析其中的错误,这就要求平时学习扎实认真,概念掌握的准确.【题目详解】解:根据选项,可知根据角和边来对三角形分别进行分类.故选:C.【题目点拨】此题考查三角形问题,很基础的一道考查数学概念的题目,在考查知识的同时也考查了学生对待学习的态度,是一道好题.4、A【分析】读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.因此,【题目详解】解:从图中可以看出各项消费金额占消费总金额的百分比.故选A.5、A【分析】根据题意得到回来时的速度为(x+20)千米/时,根据时间等于路程除以速度即可列出方程.【题目详解】根据题意得到回来时的速度为(x+20)千米/时,去时的时间是小时,回来时的时间是,∵回来时所花的时间比去时节省了,∴,故选:A.【题目点拨】此题考查分式方程的实际应用,正确理解时间、速度、路程之间的数量关系是解题的关键.6、C【解题分析】试题分析:已知给出了一个内角是50°,没有明确是顶角还是底角,所以要分50°的角是顶角或底角两种情况分别进行求解.解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故选C.考点:等腰三角形的性质;三角形内角和定理.7、B【分析】将一次函数与实际情况结合,能快速得出-6.5和23的实际意义.【题目详解】一次函数表示的是汽车行驶时间t与油箱中剩余油量的关系生活中,行驶时间越久,则剩余油量应该越少可知:-6.5表示每小时耗油6.5升,23表示出发时油箱剩余油23升故选:B.【题目点拨】本题考查一次函数的应用,解题关键是将函数解析式与事情情况对应起来.8、D【分析】根据轴对称图形的概念求解即可.【题目详解】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.【题目点拨】本题考查轴对称图形的判断,关键在于熟记轴对称图形的概念.9、A【解题分析】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.10、C【解题分析】试题分析:根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.解:∵正n边形的一个内角为135°,∴正n边形的一个外角为110°﹣135°=45°,n=360°÷45°=1.故选C.考点:多边形内角与外角.11、B【分析】根据最简分式的概念逐项判断即得答案.【题目详解】解:A、是最简分式,本选项不符合题意;B、,所以不是最简分式,本选项符合题意;C、是最简分式,本选项不符合题意;D、是最简分式,本选项不符合题意.故选:B.【题目点拨】本题考查的是最简分式的概念,属于基础概念题型,熟知定义是关键.12、C【分析】根据等腰直角三角形的性质,分AB是直角边和斜边两种情况作出图形即可得解.【题目详解】解:如图,以点A和点B为两个顶点作等腰直角三角形,

一共可作出6个.

故选C.【题目点拨】本题考查了等腰直角三角形,作出图形,利用数形结合的思想求解更形象直观.二、填空题(每题4分,共24分)13、1【题目详解】试题分析:根据题意,得|x|-1=0,且x+1≠0,解得x=1.考点:分式的值为零的条件.14、1【解题分析】试题分析:因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为1;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去.∴等腰三角形的周长为1.15、88.6【解题分析】解:该生数学科总评成绩是分。16、1【分析】根据折叠的性质可得∠EDA=90°,ED=EC=6cm,再根据直角三角形30°角所对边是斜边的一半可得AE,从而可得AC.【题目详解】解:根据折叠的性质DE=EC=6cm,∠EDB=∠C=90°,∴∠EDA=90°,∵∠A=30°,∴AE=2DE=12cm,∴AC=AE+EC=1cm,故答案为:1.【题目点拨】本题考查折叠的性质,含30°角的直角三角形.理解直角三角形斜边上的中线等于斜边的一半.17、1【分析】根据点与点关于轴对称,求出m和n的值即可.【题目详解】∵点与点关于轴对称,∴A,B两点的横坐标不变,纵坐标变成相反数,∴,∴,故答案为:1.【题目点拨】本题是对坐标系中点对称的考查,熟练掌握点关于对称轴的变化规律是解决本题的关键.18、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.000037毫克可用科学记数法表示为3.7×10-5毫克.故答案为.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共78分)19、(1)(2)【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀“同小取小”即可确定不等式组的解集.【题目详解】(1)2x+2-1>x2x-x>-2+1(2)解不等式,得:x<-2,解不等式,得:x≤,故不等式组的解集为.【题目点拨】本题考查的是解一元一次不等式和解一元一次不等式组的能力,熟练掌握不等式的基本性质以准确求出每个不等式的解集是解答此题的关键.20、(1)等腰三角形;(2)1【分析】(1)由作图可知,MN垂直平分线段AB,利用垂直平分线的性质即可解决问题.(2)求出∠CAD=30°,利用直角三角形30度的性质解决问题即可.【题目详解】解:(1)由作图可知,MN垂直平分线段AB,∴DA=DB,∴△ADB是等腰三角形.故答案为等腰三角形.(2)∵∠C=90°,∠B=30°,∴∠CAB=90°﹣30°=60°,∵DA=DB=10,∴∠DAB=∠B=30°,∴∠CAD=30°,∴CD=AD=1.【题目点拨】本题考查作图-基本作图,线段的垂直平分线的性质,等腰三角形的性质,直角三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、见解析【分析】结合角平分线的性质及作法以及线段垂直平分线的性质及作法进一步分析画图即可.【题目详解】如图所示,点P即为所求:【题目点拨】本题主要考查了尺规作图的实际应用,熟练掌握相关方法是解题关键.22、(1)2t,8-2t;(2)△ADP与△BPQ全等,线段PD与线段PQ垂直,理由见解析;(3)存在或,使得△ADP与△BPQ全等.【分析】(1)根据题意直接可得答案.(2)由t=1可得△ACP和△BPQ中各边的长,由SAS推出△ACP≌△BPQ,进而根据全等三角形性质得∠APC+∠BPQ=90°,据此判断线段PC和PQ的位置关系;(3)假设△ACP≌△BPQ,用t和x表示出边长,根据对应边相等解出t和x的值;再假设△ACP≌△BQP,用上步的方法求解,注意此时的对应边和上步不一样.【题目详解】(1)由题意得:2t,8-2t.(2)△ADP与△BPQ全等,线段PD与线段PQ垂直.理由如下:当t=1时,AP=BQ=2,BP=AD=6,又∠A=∠B=90°,在△ADP和△BPQ中,,∴△ADP△BPQ(SAS),∴∠ADP=∠BPQ,∴∠APD+∠BPQ=∠APD+∠ADP=90°,∴∠DPQ=90°,即线段PD与线段PQ垂直.(3)①若△ADP△BPQ,则AD=BP,,AP=BQ,则,解得;②若△ADP△BQP,则AD=BQ,AP=BP,则,解得:;综上所述:存在或,使得△ADP与△BPQ全等.【题目点拨】本题考查全等三角形的判定与性质,解题关键是熟练掌握全等三角形的性质和判定定理.23、(1),理由见详解;(2)①30;②95°;(3)【分析】(1)连接AD并延长至点E,利用三角形外角的性质得出左右两边相加即可得出结论;(2)①直接利用(1)中的结论有,再把已知的角度代入即可求出答案;②先根据求出,然后结合角平分线的定义再利用即可求解;(3)先根据求出,再求出的度数,最后利用求解即可.【题目详解】(1)如图,连接AD并延长至点E∵又∵∴(2)①由(1)可知∵,∴②由(1)可知∵,∴平分,CF平分(3)由(1)可知∵,∴∵,分别是、的2020等分线()∴∴【题目点拨】本题主要考查三角形外角的性质,角平分线的定义,掌握三角形外角的性质和角平分线的定义是解题的关键.24、(1)详见解析;(2)1.【分析】(1)先利用等腰三角形等边对等角得出∠B=∠C,再利用AAS证明△BDE≌△CDF,即可得出结论;(2)先证明△ABC是等边三角形,然后根据含30°的直角三角形的性质求出等边三角形的边长,则周长可求.【题目详解】(1)证明:∵AB=AC∴∠B=∠C,∵DE⊥AB于E,DF⊥AC于F,∴∠BED=∠CFD=90°,∵D是BC边的中点,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS)∴BE=CF;(2)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,∵∠BED=∠CFD=90°,∴∠BDE=∠CDF=30°,∴BD=2BE=2=CD,∴BC=4,∴△ABC周长=4×3=1.【题目点拨】本题主要考查全等三角形的判定及性质,等边三角形的判定及性质,掌握全等三角形的判定及等边三角形的判定方法是解题的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论