2024届辽宁省辽阳市太子河区数学八上期末检测试题含解析_第1页
2024届辽宁省辽阳市太子河区数学八上期末检测试题含解析_第2页
2024届辽宁省辽阳市太子河区数学八上期末检测试题含解析_第3页
2024届辽宁省辽阳市太子河区数学八上期末检测试题含解析_第4页
2024届辽宁省辽阳市太子河区数学八上期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省辽阳市太子河区数学八上期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列说法中,不正确的是()A.﹣的绝对值是﹣ B.﹣的相反数是﹣C.的立方根是2 D.﹣3的倒数是﹣2.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.6 B.8 C.8或10 D.103.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为()A.12 B.10C.8 D.64.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6 B.5 C.4 D.35.下列运算,正确的是()A. B. C. D.6.庐江县自开展创建全省文明县城工作以来,广大市民掀起一股文明县城创建热潮,遵守交通法规成为市民的自觉行动,下面交通标志中是轴对称图形的是()A. B. C. D.

7.如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30° B.45° C.60° D.90°8.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的作法依据的是()A.SSS B.SAS C.AAS D.ASA9.若x,y的值均扩大为原来的2倍,下列分式的值保持不变的是()A. B. C. D.10.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的角平分线AF交CD于E,则△CEF必为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形11.已知:一次函数的图像经过点A(,1)和点B(,-3)且<,则它的图像大致是().A. B. C. D.12.满足下列条件的△ABC不是直角三角形的是()A.AC=1,BC=,AB=2 B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3 D.∠A:∠B:∠C=3:4:5二、填空题(每题4分,共24分)13.若直角三角形斜边上的高和中线长分别是,,则它的面积是__________.14.按如图的运算程序,请写出一组能使输出结果为3的、的值:__________.15.正十边形的外角和为__________.16.小华将升旗的绳子从旗杆的顶端拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆的处,发现此时绳子末端距离地面,则旗杆的高度为______.17.如图,四边形ABCD,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD的面积为___________.18.若多项式分解因式的结果为,则的值为__________.三、解答题(共78分)19.(8分)如图,在中,,,点为的中点,点为边上一点且,延长交的延长线于点,若,求的长.20.(8分)如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足a2﹣2ab+b2=1.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE有何关系?直接说出结论,不必说明理由.21.(8分)如图①是一个长为,宽为的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图②形状拼成一个正方形.(1)若,.求图②中阴影部分面积;(2)观察图②,写出,,三个代数式之间的等量关系.(简要写出推理过程)(3)根据(2)题的等量关系,完成下列问题:若,,求的值.22.(10分)在边长为的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形(三角形的三个顶点都在小正方形的顶点上)(1)写出的面积;(2)画出关于轴对称的;(3)写出点及其对称点的坐标.23.(10分)如图,在长方形中,,,点为上一点,将沿折叠,使点落在长方形内点处,连接,且,求的度数和的长.24.(10分)计算(1)(2)(3)解方程组:25.(12分)如图,点E,F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于O,求证:OE=OF.26.已知△ABC与△A’B’C’关于直线l对称,其中CA=CB,连接,交直线l于点D(C与D不重合)(1)如图1,若∠ACB=40°,∠1=30°,求∠2的度数;(2)若∠ACB=40°,且0°<∠BCD<110°,求∠2的度数;(3)如图2,若∠ACB=60°,且0°<∠BCD<120°,求证:BD=AD+CD.

参考答案一、选择题(每题4分,共48分)1、A【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【题目详解】解:A、﹣的绝对值不是﹣,故A选项不正确,所以本选项符合题意;B、﹣的相反数是﹣,正确,所以本选项不符合题意;C、=8,所以的立方根是2,正确,所以本选项不符合题意;D、﹣3的倒数是﹣,正确,所以本选项不符合题意.故选:A.【题目点拨】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.2、D【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【题目详解】解:∵|m-2|+=0,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=1.故选D.【题目点拨】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.3、B【分析】已知为边上的高,要求的面积,求得即可,求证,得,设,则在中,根据勾股定理求,于是得到,即可得到答案.【题目详解】解:由翻折变换的性质可知,,,设,则,在中,,即,解得:,,.故选:.【题目点拨】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到是解题的关键.4、D【分析】过点作于,然后利用的面积公式列式计算即可得解.【题目详解】解:过点作于,是的角平分线,,,,解得.故选:.【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.5、D【分析】根据合并同类项法则、同底数幂的乘法和同底数幂的除法逐一判断即可.【题目详解】解:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【题目点拨】此题考查的是合并同类项和幂的运算性质,掌握合并同类项法则、同底数幂的乘法和同底数幂的除法是解决此题的关键.6、C【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【题目详解】解:如图C、能沿一条直线对折后两部分能完全重合,所以是轴对称图形;A、B、D选项中的图形,沿一条直线对折后两部分不能完全重合,所以不是轴对称图形;故选:C.【题目点拨】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.7、C【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【题目详解】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故选C.【题目点拨】本题考查了等边三角形的判定与性质,解题的关键是能根据题意得到OB=OA=AB.8、A【分析】根据角平分线的作法步骤,连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【题目详解】解:如下图所示:连接CP、DP在△OCP与△ODP中,由作图可知:∴△OCP≌△ODP(SSS)故选:A.【题目点拨】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。9、B【分析】根据分式的基本性质逐项分析即可.【题目详解】解:A、变化为,分式的值改变,故此选项不符合题意;B、=,分式的值保持不变,故此选项符合题意;C、=,分式的值改变,故此选项不符合题意;D、=,分式的值改变,故此选项不符合题意.故选:B.【题目点拨】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.10、A【解题分析】首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠BCD+∠ACD=90°,∠B+∠BCD=90°,再根据同角的补角相等可得到∠B=∠DCA,再利用三角形的外角与内角的关系可得到∠CFE=∠FEC,最后利用等角对等边可证出结论.【题目详解】∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是AB边上的高,∴∠B+∠BCD=90°,∴∠B=∠DCA,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠1+∠B=∠CFE,∠2+∠DCA=∠FEC,∴∠CFE=∠FEC,∴CF=CE,∴△CEF是等腰三角形.故选A【题目点拨】此题考查等腰三角形的判定,解题关键在于掌握判定定理.11、B【分析】结合题意,得,;结合<,根据不等式的性质,得;再结合与y轴的交点,即可得到答案.【题目详解】∵一次函数的图像经过点A(,1)和点B(,-3)∴,∴,∵<∴∴∴选项A和C错误当时,∴选项D错误故选:B.【题目点拨】本题考查了一次函数、不等式的知识;解题的关键是熟练掌握一次函数图像和不等式的性质,从而完成求解.12、D【分析】根据勾股定理的逆定理可判定即可.【题目详解】解:A、∵12+()2=4,22=4,∴12+()2=22,∴AC=1,BC=,AB=2满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.【题目点拨】本题主要考查直角三角形的判定,解题关键是掌握直角三角形的判定方法.二、填空题(每题4分,共24分)13、48【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出斜边的长,然后根据三角形的面积公式计算即可.【题目详解】解:∵直角三角形斜边上的中线长是∴该直角三角形的斜边长为8×2=16cm∵直角三角形斜边上的高是6cm∴该直角三角形的面积为:×16×6=48cm2故答案为:48【题目点拨】此题考查的是直角三角形的性质和求三角形的面积,掌握直角三角形斜边上的中线等于斜边的一半和三角形的面积公式是解决此题的关键.14、,.【分析】根据运算程序列出方程,取方程的一组正整数解即可.【题目详解】根据题意得:,当时,.故答案为:,.【题目点拨】此题考查了解二元一次方程,弄清题中的运算程序是解本题的关键.15、360°【分析】根据多边形的外角和是360°即可求出答案.【题目详解】∵任意多边形的外角和都是360°,∴正十边形的外交和是360°,故答案为:360°.【题目点拨】此题考查多边形的外角和定理,熟记定理是解题的关键.16、1【分析】过点C作CD⊥AB于点D,设旗杆的高度为xm,在中利用勾股定理即可得出答案.【题目详解】如图,过点C作CD⊥AB于点D,则设旗杆的高度为xm,则在中,解得即旗杆的高度为1m故答案为:1.【题目点拨】本题主要考查勾股定理,掌握勾股定理的内容,构造出直角三角形是解题的关键.17、36【分析】连接BD,先根据勾股定理求出BD的长,再根据勾股定理的逆定理判断出△BCD的形状,根据=即可得出结论.【题目详解】连接BD.∵∠A=90°,AB=3,DA=4,∴BD==5在△BCD中,∵BD=5,CD=12,BC=13,,即,∴△BCD是直角三角形,∴==,故答案为:36.【题目点拨】此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.18、-1【分析】根据多项式的乘法法则计算,与比较求出a和b的值,然后代入a+b计算.【题目详解】∵=x2+x-2,∴=x2+x-2,∴a=1,b=-2,∴a+b=-1.故答案为:-1.【题目点拨】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.三、解答题(共78分)19、1.【分析】先根据含的直角三角形求BC,再利用勾股定理求出AC,进而求出PC,最后利用勾股定理、含的直角三角形和方程思想求出PE.【题目详解】解:∵∴∵,∴∴在中,∵点为的中点∴∵,∴∵与互为对顶角∴=∴在中,∵在中,∴∴∴.【题目点拨】本题考查勾股定理和含的直角三角形,找清楚已知条件中的边长与要求边长的联系是解题关键.特殊角是转化边的有效工具,应该熟练掌握.20、(1)△AOB为等腰直角三角形;(2)OD⊥OE,证明见解析;(3)∠BDE与∠COE互余.【分析】(1)根据a2﹣2ab+b2=1,可得a=b,又由∠AOB=91°,所以可得出△AOB的形状;(2)OD=OE,OD⊥OE,通过证明△OAD≌△OBE可以得证;(3)由∠DEB+∠BEO=45°,∠ACB=∠COE+∠BEO=45°,得出∠DEB=∠COE,根据三角形外角的性质得出∠ABC=∠BDE+∠DEB=91°,从而得出∠BDE+∠COE=91°,所以∠BDE与∠COE互余.【题目详解】解:(1)∵a2﹣2ab+b2=1.∴(a﹣b)2=1,∴a=b,又∵∠AOB=91°,∴△AOB为等腰直角三角形;(2)OD=OE,OD⊥OE,理由如下:如图②,∵△AOB为等腰直角三角形,∴AB=BC,∵BO⊥AC,∴∠DAO=∠EBO=45°,BO=AO,在△OAD和△OBE中,△OAD≌△OBE(SAS),∴OD=OE,∠AOD=∠BOE,∵∠AOD+∠DOB=91°,∴∠DOB+∠BOE=91°,∴OD⊥OE;(3)∠BDE与∠COE互余,理由如下:如图③,∵OD=OE,OD⊥OE,∴△DOE是等腰直角三角形,∴∠DEO=45°,∴∠DEB+∠BEO=45°,∵∠ACB=∠COE+∠BEO=45°,∴∠DEB=∠COE,∵∠ABC=∠BDE+∠DEB=91°,∴∠BDE+∠COE=91°∴∠BDE与∠COE互余.21、(1);(2)或,过程见解析;(3)【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可求解;(2)根据完全平方公式的变形即可得到关系式;(3)根据,故求出,代入(2)中的公式即可求解.【题目详解】解:(1)∵阴影正方形的边长为小长方形的长与宽的差,即阴影正方形的边长为13-3=10∴;(2)结论:或∵,∴∴或;(3)∵,∴∴由(2)可知∴∵,∴.【题目点拨】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.22、(1)7;(2)见解析;(3)A(-1,3),A1(1,3).【分析】(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴,从而得出BD⊥AC,然后根据三角形的面积公式求面积即可;(2)找到A、B、C关于y轴的对称点,然后连接、、即可;(3)由平面直角坐标系即可得出结论.【题目详解】解:(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴∴BD⊥AC∴S△ABC=(2)找到A、B、C关于y轴的对称点,然后连接、、,如下图所示:即为所求.(3)由平面直角坐标系可知:点A(-1,3),点A1(1,3).【题目点拨】此题考查的是求平角直角坐标系中三角形的面积、画已知三角形关于y轴的对称图形和根据坐标系写点的坐标,掌握三角形的面积公式和关于y轴对称的图形的画法是解决此题的关键.23、【分析】根据勾股定理的逆定理即可得证;说明点D、E、F三点共线,再根据勾股定理即可求解.【题目详解】根据折叠可知:AB=AF=4,

∵AD=5,DF=3,

31+41=51,

即FD1+AF1=AD1,

根据勾股定理的逆定理,得△ADF是直角三角形,

∴∠AFD=90°,

设BE=x,

则EF=x,

∵根据折叠可知:∠AFE=∠B=90°,

∵∠AFD=90°,

∴∠DFE=180°,

∴D、F、E三点在同一条直线上,

∴DE=3+x,

CE=5-x,DC=AB=4,

在Rt△DCE中,根据勾股定理,得

DE1=DC1+EC1,即(3+x)1=41+(5-x)1,

解得x=1.

答:BE的长为1.【题目点拨】本题考查了折叠问题、勾股定理及其逆定理、矩形的性质,解决本题的关键是勾股定理及其逆定理的运用.24、(1)0;(2)1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论