2024届江西省鹰潭市八年级数学第一学期期末质量跟踪监视试题含解析_第1页
2024届江西省鹰潭市八年级数学第一学期期末质量跟踪监视试题含解析_第2页
2024届江西省鹰潭市八年级数学第一学期期末质量跟踪监视试题含解析_第3页
2024届江西省鹰潭市八年级数学第一学期期末质量跟踪监视试题含解析_第4页
2024届江西省鹰潭市八年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省鹰潭市八年级数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.9的算术平方根是()A.3 B.9 C.±3 D.±92.若把分式的x和y都扩大5倍,则分式的值()A.扩大到原来的5倍 B.不变C.缩小为原来的倍 D.扩大到原来的25倍3.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对4.下列计算中正确的是()A.(ab3)2=ab6 B.a4÷a=a4 C.a2•a4=a8 D.(﹣a2)3=﹣a65.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A.2 B.4 C.6 D.36.如图,∠AOB=60°,OC平分∠AOB,P为射线OC上一点,如果射线OA上的点D,满足△OPD是等腰三角形,那么∠ODP的度数为()A.30° B.120°C.30°或120° D.30°或75°或120°7.在平面直角坐标系中,直线y=2x﹣3与y轴的交点坐标是()A.(0,﹣3) B.(﹣3,0) C.(2,﹣3) D.(,0)8.已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.189.甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务。求甲、乙两队独做各需几天才能完成任务?若设甲队独做需天才能完成任务,则可列方程()A. B.C. D.10.下列二次根式中,最简二次根式是()A. B. C. D.11.如图,点是的外角平分线上一点,且满足,过点作于点,交的延长线于点,则下列结论:①;②;③;④.其中正确的结论有()A.1个 B.2个 C.3个 D.4个12.如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中B点坐标是(8,2),D点坐标是(0,2),点A在x轴上,则菱形ABCD的周长是()A.2B.8C.8D.12二、填空题(每题4分,共24分)13.化简:的结果为_______.14.若=0,则x=_____.15.若x+2(m-3)x+16是一个完全平方式,那么m应为_______.16.已知:,则_______________17.已知,.则___________,与的数量关系为__________.18.已知,则=__________.三、解答题(共78分)19.(8分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:一个直角三角形的两条直角边分别为,那么这个直角三角形斜边长为____;如图①,于,求的长度;如图②,点在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数的点(保留痕迹).20.(8分)如图1,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN,(1)M点如图1的位置时,如果AM=5,求BN的长;(2)M点在如图2位置时,线段AB、BM、BN三者之间的数量关系__________________;(3)M点在如图3位置时,当BM=AB时,证明:MN⊥AB.21.(8分)在平面直角坐标中,四边形为矩形,如图1,点坐标为,点坐标为,已知满足.(1)求的值;(2)①如图1,分别为上一点,若,求证:;②如图2,分别为上一点,交于点.若,,则___________(3)如图3,在矩形中,,点在边上且,连接,动点在线段是(动点与不重合),动点在线段的延长线上,且,连接交于点,作于.试问:当在移动过程中,线段的长度是否发生变化?若不变求出线段的长度;若变化,请说明理由.22.(10分)在如图所示的方格纸中.(1)作出关于对称的图形.(2)说明,可以由经过怎样的平移变换得到?(3)以所在的直线为轴,的中点为坐标原点,建立直角坐标系,试在轴上找一点,使得最小(保留找点的作图痕迹,描出点的位置,并写出点的坐标).23.(10分)如图,以的边和为边向外作等边和等边,连接、.求证:.24.(10分)(l)观察猜想:如图①,点、、在同一条直线上,,且,,则和是否全等?__________(填是或否),线段之间的数量关系为__________(2)问题解决:如图②,在中,,,,以为直角边向外作等腰,连接,求的长。(3)拓展延伸:如图③,在四边形中,,,,,于点.求的长.25.(12分)进入冬季,空调再次迎来销售旺季,某商场用元购进一批空调,该空调供不应求,商家又用元购进第二批这种空调,所购数量比第一批购进数量多台,但单价是第一批的倍.(1)该商场购进第一批空调的单价多少元?(2)若两批空调按相同的标价出售,春节将近,还剩下台空调未出售,为减少库存回笼资金,商家决定最后的台空调按九折出售,如果两批空调全部售完利润率不低于(不考虑其他因素),那么每台空调的标价至少多少元?26.湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?

参考答案一、选择题(每题4分,共48分)1、A【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.【题目详解】∵12=9,∴9的算术平方根是1.故选A.【题目点拨】此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.2、A【分析】把分式的x和y都扩大5倍,再进行约分,进而即可得到答案.【题目详解】∵把分式的x和y都扩大5倍,得,∴把分式的x和y都扩大5倍,则分式的值扩大到原来的5倍.故选A.【题目点拨】本题主要考查分式的基本性质,掌握分式的基本性质,进行约分,是解题的关键.3、A【题目详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.4、D【分析】分别根据积的乘方运算法则、同底数幂的除法和同底数幂的乘法运算法则依次计算即可得出答案.【题目详解】解:A、(ab3)2=a2b6≠ab6,所以本选项错误;B、a4÷a=a3≠a4,所以本选项错误;C、a2•a4=a6≠a8,所以本选项错误;D、(﹣a2)3=﹣a6,所以本选项正确.故选:D.【题目点拨】本题考查了幂的运算性质,属于基础题型,熟练掌握幂的运算法则是解题的关键.5、D【分析】由作图过程可得DN是AB的垂直平分线,AD=BD=6,再根据直角三角形10度角所对直角边等于斜边一半即可求解.【题目详解】由作图过程可知:DN是AB的垂直平分线,∴AD=BD=6∵∠B=10°∴∠DAB=10°∴∠C=90°,∴∠CAB=60°∴∠CAD=10°∴CD=AD=1.故选:D.【题目点拨】本题考查了作图-基本作图、线段垂直平分线的性质、含10度角的直角三角形,解决本题的关键是掌握线段垂直平分线的性质.6、D【分析】求出∠AOC,根据等腰得出三种情况,OD=PD,OP=OD,OP=CD,根据等腰三角形性质和三角形内角和定理求出即可.【题目详解】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当D在D1时,OD=PD,∵∠AOP=∠OPD=30°,∴∠ODP=180°﹣30°﹣30°=120°;②当D在D2点时,OP=OD,则∠OPD=∠ODP=(180°﹣30°)=75°;③当D在D3时,OP=DP,则∠ODP=∠AOP=30°;综上所述:120°或75°或30°,故选:D.【题目点拨】本题考查了等腰三角形,已知等腰三角形求其中一角的度数,灵活的根据等腰三角形的性质分类讨论确定点D的位置是求角度数的关键.7、A【分析】当直线与y轴相交时,x=0,故将x=0代入直线解析式中,求出交点坐标即可.【题目详解】把x=0代入y=2x﹣3得y=﹣3,所以直线y=2x﹣3与y轴的交点坐标是(0,﹣3).故选:A.【题目点拨】本题考查了直线与y轴的交点坐标问题,掌握直线与y轴的交点坐标的性质以及解法是解题的关键.8、A【解题分析】试题分析:由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:∵8+8+5=1.∴这个三角形的周长为1.故选A.考点:等腰三角形的性质.9、C【分析】求的是工效,工时,一般根据工作总量来列等量关系,等量关系为:乙21完成的工作量=1-甲9天的工作量.【题目详解】设甲队独做需天才能完成任务,依题意得:故选:C.【题目点拨】考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.涉及到的公式:工作总量=工作效率×工作时间.工作总量通常可以看成“1”.10、A【解题分析】根据最简二次根式的定义逐项分析即可.【题目详解】A.不含分母,并且也都不含有能开的尽方的因式,是最简二次根式,故符合题意;B.=,被开方式含分母,不最简二次根式,故不符合题意;C.被开方式含分母,不最简二次根式,故不符合题意;D.被开方式含能开的尽方的因式9,不最简二次根式,故不符合题意;故选A.【题目点拨】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.11、D【分析】证明Rt△BFD≌Rt△CED(HL),Rt△ADF≌Rt△ADE(HL)利用全等三角形的性质即可解决问题.【题目详解】解:如图,设AC交BD于点O.∵DF⊥BF,DE⊥AC,∴∠BFD=∠DEC=90°,∵DA平分∠FAC,∴DF=DE,故①正确,∵BD=DC,∴Rt△BFD≌Rt△CED(HL),故②正确,∴EC=BF,∵AD=AD,DF=DE,∴Rt△ADF≌Rt△ADE(HL),∵AF=AE,∴EC=AB+AF=AB+AE,故③正确,∵∠DBF=∠DCE,∠AOB=∠DOC,∴∠BAC=∠BDC,故④正确.故选:D.【题目点拨】本题考查全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12、C【分析】连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B的坐标和点D的坐标得出OD=2,求出DE=4,AD=2,即可得出答案.【题目详解】连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AD==2,∴菱形的周长=4AD=8;故选:C.【题目点拨】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.二、填空题(每题4分,共24分)13、【分析】先化简二次根式,再合并同类二次根式,即可求解.【题目详解】=,故答案是:【题目点拨】本题主要考查二次根式的加法,掌握合并同类二次根式,是解题的关键.14、﹣1或2或1【分析】直接利用分式的值为零的条件得出分子为零进而计算得出答案.【题目详解】解:若=0,则x2﹣x﹣2=0或|x|﹣1=0且x+1≠0,解得:x=﹣1或2或1.故答案为:﹣1或2或1.【题目点拨】本题考查了求解分式方程,绝对值的性质应用,一元二次方程的解法,注意分式方程分母不为0的情况.15、-1或7【题目详解】∵x+2(m-3)x+16是一个完全平方式,∴,∴m=-1或7.故答案是:-1或716、-2【分析】根据幂的乘方、负指数幂及同底数幂的运算公式即可求解.【题目详解】∵∴故∴3-3x+2x-3=2,解得x=-2,故填:-2.【题目点拨】此题主要考查幂的运算,解题的关键是熟知幂的运算公式及运用.17、4【分析】由同底数的除法可得:从而可得:的值,由,可得可得从而可得答案.【题目详解】解:,,故答案为:.【题目点拨】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键.18、1【分析】逆用同底数幂的乘法法则,即am+n=am·an解答即可.【题目详解】解:∵2m=5,2n=3,

∴2m+n=2m•2n=5×3=1.

故答案为:1.【题目点拨】本题考查了同底数幂的乘法法则的逆运用,灵活运用公式是解题的关键.三、解答题(共78分)19、;;.数轴上画出表示数−的B点.见解析.【分析】(1)根据勾股定理计算;(2)根据勾股定理求出AD,根据题意求出BD;(3)根据勾股定理计算即可.【题目详解】∵这一个直角三角形的两条直角边分别为∴这个直角三角形斜边长为故答案为:∵∴在中,,则由勾股定理得,在和中∴∴(3)点A在数轴上表示的数是:,由勾股定理得,以O为圆心、OC为半径作弧交x轴于B,则点B即为所求,故答案为:,B点为所求.【题目点拨】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.20、(1)5;(2)AB+BM=BN;(3)详见解析【分析】(1)根据等边三角形的性质可得:∠APB=∠MPN,PA=PB,PM=PN,然后即可利用SAS证明△PAM≌△PBN,再利用全等三角形的性质即得结论;(2)仿(1)的方法利用SAS证明△PAM≌△PBN,可得AM=BN,进一步即得结论;(3)根据等边三角形的性质、等腰三角形的性质和三角形的外角性质可得∠BPM=∠PMB=30°,易知∠PMN=60°,问题即得解决.【题目详解】解:(1)如图1,∵△PAB,△PMN都是等边三角形,∴∠APB=∠MPN=60°,PA=PB,PM=PN,∴∠APM=∠BPN,∴△PAM≌△PBN(SAS),∴AM=BN=5,∴BN的长为5;(2)AB+BM=BN;理由:如图2,∵△PAB,△PMN都是等边三角形,∴∠APB=∠MPN=60°,PA=PB,PM=PN,∴∠APM=∠BPN,∴△PAM≌△PBN(SAS),∴AM=BN,即AB+BM=BN;故答案为:AB+BM=BN;(3)证明:如图3,∵△PAB是等边三角形,∴AB=PB,∠ABP=60°,∵BM=AB,∴PB=BM,∴∠BPM=∠PMB,∵∠ABP=60°,∴∠BPM=∠PMB=30°,∵△PMN是等边三角形,∴∠PMN=60°,∴∠AMN=90°,即MN⊥AB.【题目点拨】本题考查了等边三角形的性质、等腰三角形的性质、全等三角形的判定和性质以及三角形的外角性质等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.21、(1)m=5,n=5;(2)①见解析;②;(3)当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PQ=PE=OE+OP,得出结论;②作辅助线,构建平行四边形和全等三角形,可得平行四边形CSRE和平行四边形CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,问题得解;(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.【题目详解】解:(1)∵,∴n−5=0,5−m=0,∴m=5,n=5;(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,∵CN=OM=OC=MN,∠COM=90°,∴四边形OMNC是正方形,∴CO=CN,∵∠EOC=∠N=90°,∴△COE≌△CNQ(SAS),∴CQ=CE,∠ECO=∠QCN,∵∠PCQ=45°,∴∠QCN+∠OCP=90°−45°=45°,∴∠ECP=∠ECO+∠OCP=45°,∴∠ECP=∠PCQ,∵CP=CP,∴△ECP≌△QCP(SAS),∴EP=PQ,∵EP=EO+OP=NQ+OP,∴PQ=OP+NQ;②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得平行四边形CSRE,且△CEN≌△CE′O,则CE=SR,过C作CF∥GH交OM于F,连接FE,得平行四边形CFGH,则CF=GH=,∵∠SDG=135°,∴∠SDH=180°−135°=45°,∴∠FCE=∠SDH=45°,∴∠NCE+∠OCF=45°,∵△CEN≌△CE′O,∴∠E′CO=∠ECN,CE=CE′,∴∠E′CF=∠E′CO+∠OCF=45°,∴∠E′CF=∠FCE,∵CF=CF,∴△E′CF≌△ECF,∴E′F=EF在Rt△COF中,OC=5,FC=,由勾股定理得:OF=,∴FM=5−=,设EN=x,则EM=5−x,FE=E′F=x+,则(x+)2=()2+(5−x)2,解得:x=,∴EN=,由勾股定理得:CE=,∴SR=CE=;(3)当P、Q在移动过程中线段MN的长度不会发生变化.理由:如图3中,过P作PD∥OQ,交AF于D.∵OF=OA,∴∠OFA=∠OAF=∠PDF,∴PF=PD,∵PF=AQ,∴PD=AQ,∵PM⊥AF,∴DM=FD,∵PD∥OQ,∴∠DPN=∠PQA,∵∠PND=∠QNA,∴△PND≌△QNA,∴DN=AN,∴DN=AD,∴MN=DM+DN=DF+AD=AF,∵OF=OA=5,OC=3,∴CF=4,∴BF=BC−CF=5−4=1,∴AF=,∴MN=AF=,∴当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.【题目点拨】本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,非负数的性质以及勾股定理等;知识点较多,综合性强,第(2)问中的两个问题思路一致:在正方形外构建与△CNQ全等的三角形,可截取OE=NQ,也可以将△CNQ绕点C顺时针旋转90°得到,再证明另一对三角形全等,得出结论,是常考题型.22、(1)图见解析;(2)可以由向右平移个单位,向下平移个单位得到;(3)点的坐标为(1,0).【分析】(1)依据轴对称的性质,即可得到△ABC关于MN对称的图形△A1B1C1;(2)依据与的位置,即可得到平移的方向和距离;(3)连接AB2,交x轴于P,连接A1P,依据两点之间,线段最短,即可得到PA1+PB2最小,进而得到点P的坐标.【题目详解】(1)如图所示,即为所求;(2)可以由向右平移个单位,向下平移个单位得到;(3)如图,连接,交轴于,连接,则最小,此时,点的坐标为(1,0).【题目点拨】本题考查了轴对称-最短路线问题以及利用轴对称变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.23、见解析【分析】根据等边三角形的性质可得边长相等,角度为60°,由此得出∠EAB=∠CAD,即可证明△EAB≌△CAD,则BE=CD.【题目详解】证明:∵△ACE和△ABD都是等边三角形∴AC=AE,AD=AB,∠EAC=∠DAB=60°∴∠EAC+∠BAC=∠DAB+∠BAC,即∠EAB=∠CAD.∴△EAB≌△CAD(SAS)∴【题目点拨】本题考查三角形全等的判定和性质、全等三角形的性质,关键在于结合图形利用性质得到所需条件.24、(1)是,;(2);(3)【分析】(1)根据垂直的定义,直角三角形的性质证得∠D=∠CAE,即可利用AAS证明△BAD≌△CEA,即可得到答案;(2)过作,交的延长线于,利用勾股定理求出BC,根据(1)得到,再利用勾股定理求出BD;(3)过作于,作于,连接,利用勾股定理求出BC,证明得到四边形BEFD是正方形,即可求出CG.【题目详解】(1)∵,,∴∠B=∠C=,∴∠BAD+∠D=∠BAD+∠CAE=90,∴∠D=∠C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论