版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省酒泉市瓜州县2024届数学八上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若,则的值为()A. B. C. D.2.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度3.如图,在△PAB中,∠A=∠B,D、E、F分别是边PA、PB、AB上的点,且AD=BF,BE=AF.若∠DFE=34°,则∠P的度数为()A.112° B.120° C.146° D.150°4.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2 B.2.5 C.3 D.45.如果代数式(x﹣2)(x2+mx+1)的展开式不含x2项,那么m的值为()A.2 B. C.-2 D.6.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或187.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED的长度就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.AAS8.甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)014122通过计算可知两组数据的方差分别为s甲2=2.0,s乙2=2.7,则下列说法:①甲组学生比乙组学生的成绩稳定;②两组学生成绩的中位数相同;③两组学生成绩的众数相同,其中正确的有()A.0个 B.1个 C.2个 D.3个9.甲乙丙丁四个同学玩接力游戏,合作定成一道分式计算题,要求每人只能在前一人的基础上进行一步计算,再将结果传递给下一人,最后完成计算,过程如图所示,接力中出现错误的是()A.只有乙 B.甲和丁 C.丙和丁 D.乙和丁10.下列长度的每组三根小木棒,能组成三角形的一组是()A.3,3,6 B.4,5,10 C.3,4,5 D.2,5,3二、填空题(每小题3分,共24分)11.一个正数的两个平方根分别是3a+2和a-1.则a的值是_______.12.如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是_____.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.14.如图,∠ABC=60°,AB=3,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒,当△ABP是钝角三角形时,t满足的条件是_____.15.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=_____度.16.把一块直尺与一块三角板如图放置,若∠1=44°,则∠2的度数是_____.17.实数的平方根是____________.18.如图,在△ABC中,AD是中线,则△ABD的面积△ACD的面积(填“>”“<”“=”).三、解答题(共66分)19.(10分)如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).20.(6分)如图,在Rt△ABC中,∠ACB=90°,两直角边AC=8cm,BC=6cm.(1)作∠BAC的平分线AD交BC于点D;(尺规作图,不写作法,保留作图痕迹)(2)计算△ABD的面积.21.(6分)问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_________度,________度,_________度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.22.(8分)潍坊市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨,下表是去年该酒店豪华间某两天的相关记录.问:旺季每间价格为多少元?该酒店豪华间有多少间?淡季旺季未入住间数120日总收入(元)228004000023.(8分)计算:.24.(8分)如图,在中,,点,,分别在边,,上,且,,连结,,,(1)求证:.(2)判断的形状,并说明理由.(3)若,当_______时,.请说明理由.25.(10分)小冬与小夏是某中学篮球队的队员,在最近五场球赛中的得分如下表所示:第一场第二场第三场第四场第五场小冬10139810小夏11113111(1)根据上表所给的数据,填写下表:平均数中位数众数方差小冬10101.8小夏101131.4(1)根据以上信息,若教练选择小冬参加下一场比赛,教练的理由是什么?(3)若小冬的下一场球赛得分是11分,则在小冬得分的四个统计量中(平均数、中位数、众数与方差)哪些发生了改变,改变后是变大还是变小?(只要回答是“变大”或“变小”)()26.(10分)为了支援青海省玉树地区人民抗震救灾,四川省某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划用10天完成.(1)按此计划,该公司平均每天应生产帐篷顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】试题解析:设故选A.2、C【题目详解】A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.3、A【分析】根据等边对等角得到∠A=∠B,证得△ADF≌△BFE,得∠ADF=∠BFE,由三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.【题目详解】解:∵PA=PB,
∴∠A=∠B,
在△ADF和△BFE中,∴△ADF≌△BFE(SAS),
∴∠ADF=∠BFE,
∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,
∴∠A=∠DFE=34°,∴∠B=34°,
∴∠P=180°-∠A-∠B=112°,
故选:A.【题目点拨】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.4、C【分析】作DE⊥AB于E,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用等等面积法列方程、解方程即可解答.【题目详解】解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=1,即点D到AB边的距离为1.故答案为C.【题目点拨】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..5、A【分析】根据“代数式(x﹣2)(x2+mx+1)的展开式不含x2项”可知x2系数等于0,所以将代数式整理计算后合并同类项,即可得出x2的系数,令其等于0解答即可.【题目详解】原式=∵代数式不含x2项∴m-2=0,解得m=2故答案选A.【题目点拨】本题考查的是多项式的乘法和不含某项的问题,知道不含某项,代表某项的系数为0是解题的关键.6、C【分析】只给出等腰三角形两条边长时,要对哪一条边是腰长进行分类讨论,再将不满足三角形三边关系的情况舍去,即可得出答案.【题目详解】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:;②当腰为3时,,三角形不成立;∴此等腰三角形的周长是1.故选:C.【题目点拨】本题主要考查等腰三角形的概念和三角形的三边关系,当等腰三角形腰长不确定时一定要分类讨论,得到具体的三条边长后要将不满足三边关系的答案舍去.7、B【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【题目详解】因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【题目点拨】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8、B【分析】根据中位数,众数的计算方法,分别求出,就可以分别判断各个命题的真假.【题目详解】解:①甲组学生比乙组学生的成绩方差小,∴甲组学生比乙组学生的成绩稳定.②甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同;③甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同.故选B.【题目点拨】此题考查方差问题,对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.方差是反映数据波动大小的量.9、C【分析】直接利用分式的加减运算法则计算得出答案.【题目详解】=﹣=﹣==,则接力中出现错误的是丙和丁.故选:C.【题目点拨】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.10、C【分析】根据三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,对各选项进行逐一分析即可.【题目详解】A、3+3=6,不能构成三角形;B、4+5<10,不能构成三角形;C、3+4>5,,能够组成三角形;D、2+3=5,不能组成三角形.故选:C.【题目点拨】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.二、填空题(每小题3分,共24分)11、.【题目详解】根据题意得:3a+2+a-1=0,解得:a=.考点:平方根.12、1【分析】由题意可得△ABE是直角三角形,根据勾股定理求出其斜边长度,即正方形边长,再根据割补法求阴影面积即可.【题目详解】∵AE⊥BE,∴△ABE是直角三角形,∵AE=3,BE=4,∴AB===5,∴阴影部分的面积=S正方形ABCD﹣S△ABE=52﹣×3×4=25﹣6=1.故答案为:1.【题目点拨】本题考查了勾股定理的简单应用,以及割补法求阴影面积,熟练掌握和运用勾股定理是解答关键.13、1.【题目详解】解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,解得x≥1故答案为1.【题目点拨】本题考查一元一次不等式的应用.14、0<t<或t>1.【分析】过A作AP⊥BC和过A作P'A⊥AB两种情况,利用含30°的直角三角形的性质解答.【题目详解】解:①过A作AP⊥BC时,∵∠ABC=10°,AB=3,∴BP=,∴当0<t<时,△ABP是钝角三角形;②过A作P'A⊥AB时,∵∠ABC=10°,AB=3,∴BP'=1,∴当t>1时,△ABP'是钝角三角形,故答案为:0<t<或t>1.【题目点拨】此题考查含30°的直角三角形的性质,关键是根据在直角三角形中,30°角所对的直角边等于斜边的一半解答.15、1.【解题分析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【题目详解】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=1°,∴∠θ=1°,故答案为1.【题目点拨】本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.16、134°【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【题目详解】解:∵∠1=44°,∴∠3=90°﹣∠1=90°﹣44°=46°,∴∠4=180°﹣46°=134°,∵直尺的两边互相平行,∴∠2=∠4=134°.故答案为134°.【题目点拨】本题考查平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,准确识图是解题的关键.17、【分析】直接利用平方根的定义计算即可.【题目详解】∵±的平方是,∴的平方根是±.故答案为±.【题目点拨】本题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.18、=【解题分析】根据三角形的面积公式以及三角形的中线的概念,知:三角形的中线可以把三角形的面积分成相等的两部分.解:根据等底同高可得△ABD的面积=△ACD的面积.注意:三角形的中线可以把三角形的面积分成相等的两部分.此结论是在图形中找面积相等的三角形的常用方法.三、解答题(共66分)19、(1)CD=BE.理由见解析;(2)△AMN是等边三角形.理由见解析.【分析】(1)CD=BE.利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE≌△ACD;然后根据全等三角形的对应边相等即可求得结论CD=BE;(2)△AMN是等边三角形.首先利用全等三角形“△ABE≌△ACD”的对应角相等、已知条件“M、N分别是BE、CD的中点”、等边△ABC的性质证得△ABM≌△ACN;然后利用全等三角形的对应边相等、对应角相等求得AM=AN、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【题目详解】(1)CD=BE.理由如下:∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=60°,∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,∴∠BAE=∠DAC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS)∴CD=BE(2)△AMN是等边三角形.理由如下:∵△ABE≌△ACD,∴∠ABE=∠ACD.∵M、N分别是BE、CD的中点,∴BM=CN∵AB=AC,∠ABE=∠ACD,在△ABM和△ACN中,,∴△ABM≌△ACN(SAS).∴AM=AN,∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN是等边三角形【题目点拨】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.20、(1)详见解析;(2).【分析】(1)利用尺规作出∠CAB的角平分线即可;(2)作DE⊥AB,垂足为E.设CD=DE=x,在Rt△DEB中,利用勾股定理构建方程即可解决问题.【题目详解】解:(1)作图如下:AD是∠ABC的平分线.(2)在Rt△ABC中,由勾股定理得:AB===10,作DE⊥AB,垂足为E.∵∠ACB=90°,AD是∠ABC的平分线,∴CD=DE,设CD=DE=x,∴DB=6﹣x,∵∠C=∠AED=90°,AD=AD,DC=DE,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE=8,∴EB=AB﹣AE=10﹣8=2,在Rt△DBE中由勾股定理得:x2+22=(6﹣x)2解方程得x=,∴S=AB•DE=.【题目点拨】本题考查了角平分线作图、角平分线的性质、全等三角形的判定与性质及勾股定理,灵活利用角平分线的性质添加辅助线是解题的关键.21、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【分析】(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【题目详解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;(2)猜想:∠ABP+∠ACP=90°-∠A;证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.(3)判断:(2)中的结论不成立.证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【题目点拨】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.22、旺季每间为800元,酒店豪华间有50间.【分析】设淡季每间价格为元,该酒店有间豪华间,则旺季时每间单价为元,根据日总收入=豪华间的单价×入住的房间数,即可得出关于,的方程组,解之即可得出结论.【题目详解】解:设淡季每间价格为元,该酒店有间豪华间,则旺季时每间单价为元,根据题意得:解得:∴,答:旺季每间为800元,酒店豪华间有50间.【题目点拨】本题考查了二元一次方程组,找准等量关系,正确列出方程组是解题的关键.23、8【分析】根据开平方,开立方,平方和绝对值的运算法则进行计算即可.【题目详解】解:原式=5+4+2﹣3=8.【题目点拨】本题主要考查了实数的混合运算,解此题的关键在于熟练掌握其知识点.24、(1)见解析;(2)△ABC是等边三角形,理由见解析;(3),理由见解析【分析】(1)根据等边对等角可证∠B=∠C,然后利用SAS即可证出结论;(2)根据全等三角形的性质可得∠BFD=∠CDE,从而得出∠B=∠1=60°,然后根据等边三角形的判定定理即可得出结论;(3)作FM⊥BC于M,利用30°所对的直角边是斜边的一半即可求出BM,从而求出BD.【题目详解】(1)证明:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CED(SAS);(2)解:△ABC是等边三角形,理由如下:由(1)得:△BDF≌△CED,∴∠BFD=∠CDE,∵∠CDF=∠B+∠BFD=∠1+∠CDE,∴∠B=∠1=60°,∵AB=AC,∴△ABC是等边三角形(3)解:当时,DF⊥BC,理由如下:作FM⊥BC于M,如图所示:由(2)得:△ABC是等边三角形,∴∠B=∠C=60°,∵FM⊥BC,∴∠BFM=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《劳动法》规定了劳动者享有哪些劳动权益
- 【小红书课件】品牌如何破圈?小红书破圈营销方法论【小红书运营】
- 江苏省新沂市高中生物 第一章 无菌操作技术实践 1.1 微生物的实验室培养二教案(选修1)
- 2024年秋九年级历史上册 第六单元 资本主义制度的初步确立 第17课 君主立宪制的英国教案 新人教版
- 2024-2025学年学年高中地理《以畜牧业为主的农业地域类型》教学设计 新人教版必修2
- 福建省泉州市泉港三川中学九年级体育《双手头上掷实心球》教案
- 高考地理一轮复习第十章产业区位因素第一节农业区位因素及其变化课件
- 研发合同缴纳印花税情况说明-文书模板
- 守株待兔课件图
- 认识心电图课件
- 2024年大学生法律知识竞赛题库及答案(共100题)
- 消费合伙人模式协议书(2篇)
- 湖北省武汉市洪山区2023-2024学年八年级上学期期中英语试题(无答案)
- 光伏项目施工总进度计划表(含三级)
- 医院培训课件:《健康教育 知-信-行》
- 《Python分支结构》教学设计
- 除数是两位数的除法口算和估算自主学习单
- 各种接线端子规格尺寸检验标准
- 全国不明原因肺炎病例监测、排查和管理方案
- 产品销售政策(最新整理)
- 佛說大藏正教血盆經
评论
0/150
提交评论