版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《课标》修改稿——学段目标之第二学段(4-6年级)知识技能1、体验从具体情境中抽象出数的过程;理解分数、百分数的意义,了解负数,掌握必要的运算技能;理解估算的意义;掌握用方程表示简单的数量关系、解简单方程的方法。2、探索一些图形的形状、大小和位置关系,了解一些几何体和平面图形的基本特征;体验图形的简单运动,了解确定物体位置的方法,掌握测量、识图和画图的基本方法。3、经历数据的收集、整理和分析的过程,掌握一些简单的数据处理技能;体验事件发生的等可能性,掌握简单的计算等可能性的方法。数学思考1、能够对生活中的数字信息作出合理的解释,会用数(合适的量纲)、字母和图表描述生活中的简单问题;初步形成数感,发展符号意识。2、在探索简单图形的性质、运动现象的过程中,初步形成空间观念。3、能根据解决问题的需要,收集与表示数据,归纳出有用的信息4、能进行有条理的思考,能清楚地表达思考的过程与结果;在与他人交流过程中,能够进行简单的辩论。问题解决1、能从社会生活中发现并提出简单的数学问题。2、能探索分析问题、解决问题的有效方法,了解解决问题方法的多样性。3、能借助于数字计算器解决简单的计算问题。4、初步学会与他人合作解决问题,尝试解释自己的思考过程。5、能初步判断结果的合理性,经历回顾与分析解决问题过程的活动。情感态度1、愿意了解社会生活中与数学相关的信息,主动参与数学学习活动。2、在他人的鼓励和引导下,尝试克服数学活动中遇到的困难,相信自己能够学好数学。3、在运用数学解决问题的过程中,体验数学的价值。4、初步养成乐于思考、实事求是、勇于质疑等良好品质。
第一单元位置教学目标:1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。2.使学生能在方格纸上用数对确定位置。教学重点:能用数对表示物体的位置。教学难点:能用数对表示物体的位置,正确区分列和行的顺序。导入我们全班有58名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?学生各抒己见,讨论出用“第几列第几行”的方法来表述。新授教学例1如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)小结例1:确定一个同学的位置,用了几个数据?(2个)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。练习:教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。生活中还有哪里时候需要确定位置,说说它们确定位置的方法。教学例2我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)同桌讨论说出其他场馆所在的位置,并指名回答。学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(设计挂图或用投影出示)练习练习一第4题学生独立找出图中的字母所在的位置,指名回答。学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置练习一第6题独立写出图上各顶点的位置。顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?照点A的方法平移点B和点C,得出平移后完整的三角形。观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)总结我们今天学了哪些内容?你觉得自己掌握的情况如何?作业练习一第1、2、5、7、8题。
第二单元分数乘法单元目标:1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。单元重点:分数乘法的意义和计算法则。单元难点:1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。2、分数乘法计算法则的推导。
1、分数乘法(1)分数乘整数教学目标:1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。教学过程:复习1.出示复习题。(1)列式并说出算式中的被乘数、乘数各表示什么?5个12是多少?9个11是多少?8个6是多少?(2)计算:++=++=2.引出课题。++这题我们还可以怎么计算?今天我们就来学习分数乘法。新授利用++教学分数乘法。这道加法算式中,加数各是多少?(都是)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,×3)++=9,那么++=×3,所以×3=____________=9。同学们想想看,×3=9计算过程是怎样的?谁能把它补充完整。出示例1,画出线段图,学生独立列式解答。??引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。练习:练习完成“做一做”第2题。教学例2(1)出示×6,学生独立计算。(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)作业练习二第1、2、4题。课后反思:
(2)一个数乘分数教学目标:1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。教学难点:推导算理,总结法则。教学过程:一、导入1、计算下列各题并说出计算方法。×××2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。二、新课1、教学例3(1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式:×(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即的,由此得出×这个乘法算式表示“的是多少?”(3)根据直观的操作结果,得出×=,根据刚才操作的过程和结果推导出计算方法:×==。(4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。2、相关练习:练习二第5题。3、小结一个数乘分数的意义和计算方法。(1)意义:一个数乘分数,表示求这个数的几分之几是多少。(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。4、教学例4(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式:×。×=×==1151(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约分,再着手计算)。三、练习1、练习三第6题(1)求2枝长多少分米,就是求2个是多少?算式:×2(2)求枝或枝长多少分米,就是求的是多少,或的是多少。2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)四、作业练习二第3、7、8、10题。课后反思:
(3)分数混合运算和简便运算教学目标:1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。教学重点:理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。教学过程:一、复习1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)3、观察下面各题,先说说运算顺序,再进行计算。(1)36×2+15(2)5×6+7×3(3)15×(34-27)二、新授1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(1)+×(2)×-(3)-×(4)×+2、复习整数乘法的运算定律(1)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c(2)这些运算定律有什么用处?你能举例说明吗?(3)用简便方法计算:25×7××1013、推导运算定律是否适用于分数。(1)鼓励学生大胆猜测并勇于发表自己的个人意见。(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)(3)各四人小组汇报讨论和计算结果。4、教学例6(1)出示:××,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)(2)出示:+×,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为×4和×4都能先约分,这样能使数据变小,方便计算)(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。三、练习P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。课后反思:
(4)练习课教学目标:1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。教学难点:熟练掌握运算定律,准确、合理地进行简便计算。教学过程:一、复习1、复习分数混合运算的运算顺序。2、复习乘法的简便运算定律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c二、巩固练习1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如:-×=×(1-);×(5-)既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。3、练习三第2题:一朵花要用张纸,一个同学做了9朵,列式×9,另一个同学做了11朵,列式×11,他们一共做了×9+×11(朵),学生还可能这样列式:×(9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。,引导学生发现,这种列式实际上就是乘法分配律的两种形式。4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。三、布置作业完成相关的练习册。‘课后反思:
2、解决问题(1)分数乘法一步应用题教学目标:1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。教学重点:理解题中的单位“1”和问题的关系。教学难点:抓住知识关键,正确、灵活判断单位“1”。教学过程:一、复习1、先说下列各算式表示的意义,再口算出得数。12××2、列式计算。(1)20的是多少?(2)6的是多少?3、学生得出:求一个数的几分之几用乘法。二、新授1、教学例1(1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的”,结合线段图理解题意,找到解题思路。(2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)(3)在分析题意的基础上,学生独立列式、计算。2500×=1000(平方米)2、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。3、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。三、练习1、练习四第2题:让学生先找出分率句中隐藏的单位“1”——全世界的丹顶鹤数2000只。2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。四、总结解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)课后反思:
(2)两步分数乘法应用题教学目标:1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。2、发展学生思维,侧重培养学生分析问题的能力。教学重点:理解数量关系。教学难点:根据多几分之几或少几分之几找出所求量的对应分率。教学过程:复习1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?(1)一块布做衣服用去。(2)用去一部分钱后,还剩下。(3)一条路,已修了。(4)水结成冰,体积膨胀。(5)甲数比乙数少。 2、口头列式:(1)32的是多少?(2)120页的是多少?(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。二、新授1、教学例2(1)运用线段图帮助学生分析题意,寻找解题方法。(2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。降低?分贝降低?分贝现在?分贝80分贝四人小组讨论,根据线段图提出解决办法,并列式计算。解法一:80-80×=80-10=70(分贝)现在?分贝80分贝现在?分贝80分贝?解法二:80×(1-)=80×=70(分贝)(5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。2、巩固练习:P20“做一做”3、教学例3(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多”表示什么意思?(组织学生讨论,说说自己的理解)(2)引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的”。着重让学生说说谁与谁比,把谁看作单位“1”。(3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。解法一:75+75×=75+60=135(次)解法二:75×(1+)=75×=135(次)4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)三、练习1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。四、布置作业练习五第7、8、9、10题。课后反思:
3、倒数的认识教学目标:1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。教学难点:掌握求倒数的方法教学过程:一、导入1、口算:(1)××6××40(2)××3××802、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识二、新授1、教学倒数的意义。(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。(2)学生汇报研究的结果:乘积是1的两个数互为倒数。(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)2、教学求倒数的方法。(1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。6=3、教学特例,深入理解(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)3、巩固练习:课本24页“做一做”(1)学生独立解答,教师巡视。(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。三、练习1、练习六第2题:同桌互说倒数。2、辨析练习:练习六第3题“判断题”。3、开放性训练。×()=()×=()×()四、总结你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?课后反思:
4、整理和复习复习目标:1、使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算。2、使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。3、引导学生准确地找到单位“1”,并能熟练地解答一步和二步的乘法应用题。复习重点:引导学生找准单位“1”,分析应用题的数量关系。复习难点:让学生正确、独立地分析应用题的数量关系。复习过程:一、复习分数乘法1、学生独立计算P26第1题,并思考式子的意义及计算法则。2、分数乘法的意义(1)分数乘整数的意义是什么?(表示几个相同加数的和或表示一个数的几倍是多少)(2)一个数乘分数的意义是什么?(表示一个数的几分之几是多少)3、分数乘法的计算法则(1)分数乘整数:把能约分的先约分,然后把整数与分子相乘,分母不变。(2)分数乘分数:同样把能约分的先约分,然后用分子乘分子,分母乘分母。4、练习:练习七第1题。二、复习计算及简便计算1、复习乘加乘减的运算顺序:先算二级运算,再算一级运算,有括号的要先算小括号里面的,再算中括号里面的。2、复习乘法的运算定律:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c3、观察P26第2题,说说这三题适合运用什么运算定律?为什么?然后学生独立完成。4、练习:练习七第4题。三、复习分数乘法应用题1、复习解答分数乘法应用题的步骤:(1)找到题目中的分率句,确定单位“1”。(2)根据题目中的数量关系,求出所要求的部分量。2、P26第3题(1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?(2)根据题意分析数量关系,然后列式计算,全班讲评。3、练习:练习七第6题。四、复习倒数1、复习倒数的意义:乘积是1的两个数互为倒数。2、互为倒数的两个数有什么特征?(分子、分母的位置刚好颠倒位置)1的倒数是多少?0有没有倒数?3、复习写一个数的倒数的方法:交换原来分子和分母的位置(注意强调如果是整数要先把它写成分母为1的分数,然后在交换分子和分母的位置。)4、练习:练习七第7题。五、练习练习七第2、3、5题(学生独立列式计算,指名板演,讲评时让学生说清是怎样思考的)课后反思:
第三单元分数除法单元目标:1、理解并掌握分数除法的计算方法,会进行分数除法计算。2、会解答已知一个数的几分之几是多少求这个数的实际问题。3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。4、能运用比的知识解决有关的实际问题。单元重点:一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。单元难点:一个数除以分数的计算法则的推导。
分数除法(1)分数除法的意义和整数除以分数教学目标:通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。教学重点:使学生理解算理,正确总结、应用计算法则。教学难点:使学生理解整数除以分数的算理。教学过程:一、复习1、复习整数除法的意义(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)2、口算下面各题×3××××6×二、新授1、教学例1(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)(2)学生把这道乘法应用题改编成两道除法应用题,并解答。A、3盒水果糖重300克,每盒有多重?300÷3=100(克)B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。×3=(千克)÷3=(千克)÷3=3(盒)(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。2、巩固分数除法意义的练习:P28“做一做”3、教学例2(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。4÷4÷25A、÷2==,每份就是2个。B、÷2=×=,每份就是的。(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。三、练习÷3÷3÷20÷5÷10÷6四、总结1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)2、谁来把这两部分内容说一说?课后反思:
(2)一个数除以分数教学目标:1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。2、培养学生的语言表达能力和抽象概括能力。3、培养学生良好的计算习惯。教学重点:总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。教学难点:利用法则正确、迅速地进行计算,并能解决一些实际问题。教学过程:一、复习1、列式,说清数量关系小明2小时走了6km,平均每小时走多少千米?(速度=路程÷时间)2、计算下面,直接写出得数×4×3×2×6÷4÷3÷2÷6二、新授1、默读例3,理解题意,列出算式:2÷÷2、探索整数除以分数的计算方法(1)2÷如何计算?引导学生结合线段图进行理解。(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)1小时走了?千米?1小时走了?千米?小时走2km(3)引导学生讨论交流:已知小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?(4)根据学生的回答把线段图补充完整,并板书出过程。先求小时走了多少千米,也就是求2个,算式:2×再求3个小时走了多少千米,算式:2××3综合整个计算过程:2÷=2××3=2×2、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数等于用整数乘这个分数的倒数。3、计算÷,探索分数除以分数的计算方法(1)学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。÷=×=2(km)(2)学生用自己的方法来验证结果是否正确。4、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。三、练习1、P31“做一做”的第1、2题。2、练习八第2、4题。
(3)分数混合运算教学目标:通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。通过练习,培养学生的计算能力及初步的逻辑思维能力。3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。教学重点:确定运算顺序再进行计算。教学难点:明确混合运算的顺序。教学过程:一、复习1、复习整数混合运算的运算顺序(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。2、说出下面各题的运算顺序。(1)428+63÷9―17×÷4―3×÷[(1.6+0.7)×]—3.12)]×―39)二、新授1、教学例4(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。(2)根据学生的回答,归纳出两种思路:A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。2、巩固练习:P34“做一做”(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。三、练习1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。2、练习九第2-4题(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼板到地面的高度实际上只有5层楼的高度。(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240÷×;B、可以先求装完的有多少千克,综合算式是240×÷。四、布置作业练习九第5-9题。课后反思:
2、解决问题(1)已知一个数的几分之几是多少求这个数的应用题教学目标:1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。教学过程:一、复习1、出示复习题:根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。小明的体重×=体内水分的重量4、指名口头列式计算。二、新授1、教学例1的第一个问题:小明的体重是多少千克?水分28千克水分占体重的水分28千克水分占体重的体重?千克(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×=体内水分的重量(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重×=体内水分的重量,反过来,体内水分的重量÷=小明的体重)2、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?(1)启发学生找到分率句,确定单位“1”。(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)爸爸体重的爸爸体重的35千克?千克爸爸:小明:爸爸的体重×=小明的体重方程解:解:设爸爸的体重是χ千克。算术解:35÷=75(千克)χ=35χ=35÷χ=753、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)三、练习1、练习十第1—3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导学生发现250ml的鲜牛奶是多余条件)2、练习十第6题(引导学生先求出单位“1”——爸爸妈妈两人的工资和1500+1000,再根据数量关系式进行计算)四、总结这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。课后反思:
(2)稍复杂的分数除法应用题教学目标:1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学难点:分析题中的数量关系。教学过程:一、复习小红家买来一袋大米,重40千克,吃了,还剩多少千克?1、指定一学生口述题目的条件和问题,其他学生画出线段图。2、学生独立解答。3、集体订正。提问学生说一说两种方法解题的过程。4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。二、新授1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?(1)吃了是什么意思?应该把哪个数量看作单位“1”?(2)引导学生理解题意,画出线段图。吃了吃了剩下15千克?千克“1”(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量(4)指名列出方程。解:设买来大米X千克。x-x=152、教学例2(1)出示例题,理解题意。(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的(2)学生试画出线段图。(3)根据线段图,结合题中的分率句,列出数量关系式:航模小组人数+美术小组比航模小组多的人数=美术小组人数根据等量关系式解答问题。解:设航模小组有χ人。χ+χ=25(1+)χ=25χ=25÷χ=20三、小结1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)四、练习练习十第4、12、14题。课后反思:
3、比和比的应用(1)比的意义教学目标:1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。教学重点:比与除法、分数的关系教学难点:理解比的意义教学过程:一、复习。某车间有男工人5人,女工人8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?分数与除法有什么关系?二、新授。教学比的意义。教学同类量的比。A、2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽的关系?(引导学生说出:可以求长是宽的几倍?或求红旗的宽是长的几分之几?)B、这两个关系都是用什么方法来求的?(除法)C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。教学不同类量的比。A、“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(路程÷时间=速度,算式:42252÷90)B、对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。归纳比的意义。A、通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)B、练习:判断,下面数量间的关系是表示两个数的比吗?甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。足球比赛,甲队和乙队的比分是3比2。教学比的写法、比的各部分名称。比的写法。15比10记作15∶1010比15记作10∶1542252比90记作42252:90比的各部分名称。A、学生自学课本,小组讨论概括知识点。B、小组汇报并举例:“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:……前项……比号……后项……前项……比号……后项……比值3.教学比与除法、分数的关系。(1)比与除法的关系A、观察上面的式子,比的前项相当于什么?(被除数),后项相当于什么?(除数)比值相当于什么?(商)。B、比的后项能不能是零?为什么?(比的后项不能是零。因为比的后项相当于除数,除数不能是0,所以比的后项也不能是0)C、比值通常用分数表示,也可以用小数或整数表示。(2)比与分数的关系。A、根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)两个数的比也可以写成分数的形式。例如15:10,可写成,读作15比10。结合上面的讲解,板书下表:除法被除数÷(除号)除数商分数分子-(分数线)分母分数值比前项:(比号)后项比值三、巩固练习。完成课本“做一做”。练习十一第1、2题。四、布置作业。课本练习十一的第3题。补充:求出比值。0.375∶0.875∶0.75∶2.6∶3.9课后反思:
比的基本性质教学目的:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。教学重点:理解比的基本性质,掌握化简比的方法教学难点:化简比与求比值0的不同教学过程:一、复习。1、什么叫做比?比的各部分名称是什么?2、比与除法和分数有什么关系?比前项:(比号)后项比值除法被除数÷(除号)除数商分数分子-(分数线)分母分数值66÷28÷23、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷164、分数的基本性质是什么?举例:==二、新授1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。6÷8=(6×2)÷(8×2)=12÷166:8=(6×2)∶(8×2)=12:166:8=(6÷2)∶(8÷2)=3:46÷8=(6÷2)÷(8÷2)=3÷4小组派代表说明验证过程,其他同学补充说明。正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。教学例1出示例题:把下面各比化成最简单的整数比15∶10∶0.75∶2引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)指名学生说出自己化简的方法,全班评判。三、练习1、P46“做一做”2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)四、总结今天我们学习了什么知识?比的基本性质可以应用在哪些方面?课后反思:
(3)比的应用教学目标:结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。教学重点:进一步掌握按比例分配应用题的结构特点和解题思路。教学难点:正确分析解答比例分配应用题。教学过程:一、复习。1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)二、新授。1、教学例2。(1)出示例2:(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)11+411+41+44浓缩液的体积:500×1+44水的体积:500×=400(ml)答:稀释液100ml,水400ml。(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)2、补充练习(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)(4)怎样分别算出各班应种的棵数?引导学生解答:三个班的总人数:47+45+48=140(人)一班应栽的棵数:280×=94(人)二班应栽的棵数:280×=90(人)三班应栽的棵数:280×=96(人)答:一班栽树94棵,二班栽树90棵,三班栽树96棵。(5)学生进行检验。(6)学生试做“做一做”中的第2题。三、巩固练习。练习十二的第1、3题。四、布置作业。练习十二第2、4、5、6、7题。
4、整理和复习整理复习(1)复习目标:使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。复习重点:分数除法的计算方法,化简比。复习难点:正确计算分数除法。复习过程:一、复习分数除法的意义和计算法则1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?(1)分数除以整数,例如÷5;(2)一个数除以分数,它又包括整数除以分数,例如20÷;和分数除以分数,例如÷。(3)做第52页“整理和复习”的第2题。2、分数除法的意义(1)第52页“整理和复习”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)(2)让学生说说是怎样题改写成两道分数除法算式的。(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)3、分数除法的计算法则(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。(3)完成P52“整理和复习”第2题。(4)P53练习十三第2题。二、复习比的意义和基本性质1、比的意义(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)(2)以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。3∶2=1.5
┇┇┇┇
前比后比
项号项值
(3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式,但仍读作3比2。特别强调比的后项不能为0)(4)比和除法、分数的联系除法被除数÷(除号)除数商分数分子-(分数线)分母分数值比前项:(比号)后项比值2、比的基本性质(1)复习概念及化简方法①比的基本性质是什么?②应用比的基本性质,怎样对整数比进行化简?③不是整数的比应该怎样化简?(2)学生做P52“整理和复习”第3题(指名学生说说自己是怎样想的)三、课堂练习1、练习十三的第1题(先让学生独立完成.订正时,要让学生说出判断正误的理由)2、做练习十四的第2题.3、做练习十四的第3题(学生独立完成.教师注意巡视,察看学生所用算法是否简便)4、做练习十四的第7题.课后反思:
整理复习(2)教学目的:使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力.教学重点:正确解答分数乘除法应用题教学难点:分数乘除法应用题的联系与区别教学过程:一、推理训练1、男生占全班人数的,女生占全班人数的()。2、一堆煤,用去了,还剩下()。3、今年比去年增产,今年相当于去年的()。二、对比训练:1、一步分数应用题①张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几?②张大爷养了200只鹅,鹅的只数是鸭的只数的,养了多少只鹅?③张大爷养了200只鹅,鸭的只数是鹅的只数的,养了多少只鸭?(1)比较相同点和不同点引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数,鹅的只数是鸭的几分之几;不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位“1”;不同的是需要根据已知、未知的变化确定该用什么方法解答。(2)比较完后,学生将三道题的解答过程写在练习本上。2、出示题组:①上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千米?②一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?(1)学生自己画线段图,分析,解答。](2)对比:两题有什么异同?你是怎样分析的,如何区别的?3、出示题组:①停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆?②停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆?③停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆④停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?(1)学生独立画线段图,分析,解答。](2)对比:1、2两题有什么异同?3、4两题呢?你是怎样分析的,如何区别的?(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么?引导学生归纳出:㈠分析“分率句”,判断单位“1”是哪个数量?㈡画出线段图,找出“量”和“率”的对应关系。㈢确定已知单位“1”用乘法,求单位“1”用除法或用方程解。三、课堂练习:1、第53页“整理和复习”的第4题(根据题目的条件应该确定把谁看作单位“1”?单位“1”已知还是未知?)2、练习十三第4、5题,独立完成,集体订正。四、作业:练习十四的第6--10题课后反思:
第四单元:圆单元教学计划一、教材分析
这一单元的内容是圆,在这个单元中,教材安排了“圆的认识”、“圆的周长和面积”三个具体的内容,这三个内容由易到难,层层深入。
本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。二、教学目标:1、学生认识圆,掌握圆的特征;理解直径半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。2、探索圆的周长与面积的计算方法中,获得探索问题成功的体验。3、亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。4、通过以上一系列的学习活动,激发学生的学习兴趣,培养主动探索的欲望和创新精神。5、培养学生观察、比较、想象等能力,进一步发展学生的空间观念。三、教学重点、难点
1、教学重点:求圆的周长与面积。
2、教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。四、教学准备:圆实物模型,圆规,三角板,圆形纸板,圆面积演示器。五、采取措施:1、加强动手操作,培养学生自主探索能力。2、注重知识的前后联系,体现“化曲为直”“化圆为方”的转化思想。3、注重加强练习巩固所学知识,加强小组合作学习。六、课时安排:圆的认识……………3课时左右圆的周长……………2课时左右圆的面积……………2课时左右整理和复习…………1课时左右确定起跑线…………1课时左右
第一课时圆的认识教学内容:教材56~58页例1、例2及做一做,练习十四1~4题。教学目标:1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。2、会使使用工具画圆。3、培养学生观察、分析、综合、概括及动手操作能力。教学重点:圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。教学难点:画圆的方法,认识圆的特征。教学准备:圆形纸片,圆规,小黑板。教学过程:一、复习。1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?长方形正方形平行四边形三角形梯形示圆片图形:(1)圆是用什么线围成的?(圆是一种曲线图形)举例:生活中有哪些圆形的物体?二、认识圆的特征。1、学生自己在准备好的纸上画一个圆,并动手剪下。2、动手折一折。(1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母O表示)(2)再折出另外两条折痕,看看圆心是否相同。3、认识直径和半径。(1)将折痕用铅笔画出来,比一比是否相等?(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。4、讨论:(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。在同一个圆里,有无数条半径,且所有的半径都相等。5、直径与半径的关系。(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。得出结论:在同一个圆里,r=或d=2r6、巩固练习:课本58“做一做”的第1~4题。三、学习画圆。1、介绍圆规的各部分名称及使用方法。2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。四、巩固练习。1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。2、判断,并说为什么。(1)半径的长短决定圆的大小。()(2)圆心决定圆的位置。()(3)直径是半径的2倍。()(4)圆的半径都相等。()3、思考题:在操场如何画半径是5米的大圆?五、课堂小结本节课你学习了什么知识?你有什么收获?师:其实生活中的很多现象都象圆一样蕴含着丰富的数学规律,需要我们在不断的探索中来认识它,理解它,应用它。老师相信你们在今后的学习中,经过自己的实践,一定会探索出大自然中的更多奥妙。六、布置作业。练习十四第1~4题。七、板书设计:圆的认识圆心0在同圆内:半径rr=或直径dd=2r
第二课时轴对称图形教学内容:教材59页例3及做一做。教学目标:1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。2、使学生认识到圆是轴对称图形,且对称轴有无数条。3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识教学重点:圆的对称轴。教学难点:画对称轴的方法。教学过程:一、观察以前认识对称图形。1、举例说出轴对称的物体。如:蝴蝶、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点? 2、观察、概括。如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。二、教学认识圆的对称轴1、出示例3:你能分别画出下面两个圆的对称轴吗?你能画出几条?2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。三、巩固练习。1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。2、小结:对称轴两侧相对点到对称轴的距离相等。3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。4、下面的图形是轴对称图形吗?它们各有几条对称轴?长方形等边三角形等腰三角形正方形圆环形四、课堂小结:通过这节课的学习,你有那些收获?同位先说一说。谁能用简洁的语言告诉我们大家?你认为圆的有关知识在生活中有那些用途?五、布置作业:图案欣赏,课件演示。你能用圆规画出这些美丽的图案吗?六、板书设计:轴对称图形圆是轴对称图形直径所在的直线是圆的对称轴圆有无数条对称轴。教学反思:
第三课时圆的认识练习课教学内容:教材练习十四剩余内容。教学目标:1、使学生在练习的过程中,进一步认识圆的有关知识。2、使学生进一步理解和掌握圆的特征、发展空间观念。3、使学生进一步体验圆与生活的联系,感受认识圆的价值,提高学习数学兴趣,同时在运用中去培养良好的学习习惯。教学重点、难点:1、理解和掌握圆的特征、发展空间观念、提升圆的认识。2、进一步体验圆与生活的联系,感受认识圆的价值。教学准备:小黑板,三角尺,圆规。教学过程:一、情景引入,回顾再现同学们:我们已经认识了圆,谁来介绍介绍有关圆的知识?学生思考后回答,教师有选择地板书:圆心、半径、直径、对称图形。师:有关圆的知识在我们生活中应用非常广泛,与我们的生活紧密相连,所以,我们不但要学好,还要用好,你们说对吗?揭示课题,这节课我们进行圆的认识有关练习,并板书课题:圆的认识练习。同学们,有没有信心尝试下面的练习?二、分层练习,强化提高1、基本练习,填空。(每对两道得一颗★)(1)圆中心的一点叫做(
),用字母(
)表示,它到圆上任意一点的距离都(
)。(2)(
)叫做半径,用字母(
)表示。(3)(
)叫做直径,用字母(
)表示。(4)在一个圆里,有(
)条半径、有(
)条直径。(5)(
)确定圆的位置,(
)确定圆的大小。(6)在一个直径是8分米的圆里,半径是(
)厘米。(7)画圆时,圆规两脚间的距离是圆的(
)。(8)在同一圆内,所有的(
)都相等,所有的(
)也相等。(
)的长度等于(
)长度的2倍。完成后提问对答案,同位互换检查,有错题的改正。集体展评规范画法。集体订正,展示学生的作业,提问圆规两脚叉开的长度。(学生自我评价:美观,能标清直径或半径,得2颗★,其他得一颗★,不按要求的不得★)。看图填空,理解巩固直径与半径的关系。(自我评价:全对得2颗★,错一题得一颗星,错2题不得★)同学们:填空、作图都没有难倒你们,那么下面的题是否有信心做对?在右边圆里的几条线段中,哪一条是直径?请用彩色笔描出来。比较这些线段的长度,你发现了什么?重点谈学生的发现:在圆中所有连接圆上两点间的线段中,通过圆心的哪一条,即圆的直径最长。5、鼓励学生的学习兴趣:你们的发现非常正确,能用刚才的发现解决下面的问题吗?谁能解释,用下面的方法可以测量出没有标出圆心的圆的直径?三、巩固练习。1、画一个直径是5厘米的圆,并标明圆心与半径r。2、把圆规的两脚叉开3厘米画一个圆,并标明直径d,然后再做出这个圆的互相垂直的两条对称轴。(如没有时间可以放到课下)四、归纳小结通过这节课的练习,你有什么感受?收获了那些?五、作业布置1、在圆内画一个最大的正方形2、思考:长方形的周长与它的长和宽有关系,那么圆的周长可能与什么有关系呢?课后反思:
第四课时圆的周长教学内容:教材62~65页内容及做一做,练习十五1、5、8题。教学目标:1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。2、培养学生的观察、比较、概括和动手操作的能力。3、对学生进行爱国主义教育。教学重点:圆的周长和圆周率的意义,圆周长公式的推导过程。教学难点:圆周长公式的推导过程。教学过程:一、认识圆的周长。1、出示一个正方形。这是什么图形?什么是正方形的周长?怎样计算?这个正方形周长与边长有什么关系?C=4a2、什么是圆的周长?让学生上前比划,圆的周长在那?那一部分是圆的周长?得出定义:围成圆的曲线的长叫做圆的周长。二、圆周长的公式推导。1、探索学习。(1)你可以用什么办法知道一个圆的周长是多少?(2)学生各抒己见,分别讨论说出自己的方法:A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。B、把圆放在直尺上滚动一周,直接量出圆的周长。C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。2、动手实践。(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。(2)引生看表,问你们看周长与直径的比值有什么关系?(3)你有办法验证圆的周长总是直径的3倍多一点吗?(4)阅读课本63页内容,介绍圆周率,及介绍祖冲之。3、教学例1圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?第一个问题:已知d=20米求:C=?根据C=πd×20=62.8(m)第二个问题:已知:小自行车d=50cm先求小自行车C=?c=πd50cm=0.5m×0.5=1.57(m)再求绕花坛一周车轮大约转动多少周?62.8÷1.57=40(周)答:它的周长是62.8米。绕花坛一周车轮大约转动40周。三、巩固练习。1、生独立完成64页做一做,集体核对。2、生板演65页练习十五的第1题,集体点评。3、判断正误。(1)圆的周长是直径的3.14倍。()(2)在同圆或等圆中,圆的周长是半径的6.28倍。()(3)C=2πr=πd()(4)半圆的周长是圆周长的一半。()四、课堂小结:这节课你有哪些收获?五、作业。练习十五的第5、8题六、板书设计圆的周长C=πd例1:第一个问题:已知d=20米求:C=?根据C=πd×20=62.8(m)第二个问题:已知:小自行车d=50cm先求小自行车C=?c=πd50cm=0.5m×0.5=1.57(m)再求绕花坛一周车轮大约转动多少周?62.8÷1.57=40(周)答:它的周长是62.8米。绕花坛一周车轮大约转动40周。
第四课时圆的周长(2)教学内容:练习十五剩余内容。教学目标:1、通过教学使学生学会根据圆的周长求圆的直径、半径。2、培养学生逻辑推理能力。3、初步掌握变换和转化的方法。教学重点:求圆的直径和半径。教学难点:灵活运用公式求圆的直径和半径。教学准备:小黑板。教学过程:一、复习。1、口答。4π2π5π10π8π2、求出下面各圆的周长。00C=πdc=2πr2×××2=8×3.14=6.28(厘米)=25.12(厘米)二、新课。1、提出研究的问题。(1)你知道π表示什么吗?(2)下面公式的每个字母各表示什么?这两个公式又表示什么?C=πdC=2πr(3)根据上两个公式,你能知道:直径=周长÷圆周率半径=周长÷(圆周率×2)2、学习练习十四第2题。(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)已知:c=3.77m求:d=?解:设直径是x米。÷≈÷3.14x≈(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)已知:c=1.2米R=c÷(2Π)求:r=?解:设半径为x米。×÷2÷x=0.191≈0.19(米)x≈0.19三、巩固练习。1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?2、求下面半圆的周长,选择正确的算式。D=8厘米⑴×D=8厘米⑵×8×2⑶×8÷2+83、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?20×2×3.14=125.6(厘米)×=94.2(厘米)5厘米4、练习十五第10题思考题。下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美国AHA急救培训
- 两家公司合作合同范本关于项目合作细节
- 《形象期刊业务培训》课件
- 晚会活动总结幼儿园
- 《压力容器零部》课件
- 节能减排培训计划
- 《MCS指令系统》课件
- 《尊师重道主题班会》课件
- 第三单元活动课 公开课一等奖创新教案统编版高中语文必修上册
- 胃癌手术病例分析
- 2024年社区专职干部招聘考试全真模拟试卷及答案【共四套】
- 第一单元《-参考活动1-唱响团歌》说课稿 2024-2025学年初中综合实践活动苏少版八年级上册
- 中考小说阅读专题复习公开课获奖课件百校联赛一等奖课件
- 2024年专利许可使用合同(独占性)
- 2024七年级数学上册第6章平面图形的初步认识综合与实践-汽车盲区问题习题课件新版苏科版
- 2024年化妆品分销商协议
- 01-专题一 信息类文本阅读
- 2022水利工程设计标准强制性条文汇编
- 智联招聘在线测评真题
- 国家经济安全课件
- 奢沟小学2024年春季学期法治副校长进校园开展安全、法制知识讲座实施方案
评论
0/150
提交评论