八年级数学上册知识讲解及巩固练习:全等三角形判定二(ASAAAS)(基础)知识讲解_第1页
八年级数学上册知识讲解及巩固练习:全等三角形判定二(ASAAAS)(基础)知识讲解_第2页
八年级数学上册知识讲解及巩固练习:全等三角形判定二(ASAAAS)(基础)知识讲解_第3页
八年级数学上册知识讲解及巩固练习:全等三角形判定二(ASAAAS)(基础)知识讲解_第4页
八年级数学上册知识讲解及巩固练习:全等三角形判定二(ASAAAS)(基础)知识讲解_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE全等三角形判定二(ASA,AAS)(基础)责编:杜少波【学习目标】1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.3.掌握角平分线的画法,掌握角平分线性质定理并能熟练运用它解决问题.【要点梳理】【高清课堂:379110全等三角形判定二,知识点讲解】要点一、全等三角形判定3——“角边角”全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).要点诠释:如图,如果∠A=∠,AB=,∠B=∠,则△ABC≌△.要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SASAASASA两角对应相等ASAAAS两边对应相等SASSSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.要点四、角平分线的性质定理1.角平分线的性质定理:角平分线上的点到角两边的距离相等.

要点诠释:

用符号语言表示角的平分线的性质定理:

若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.

2.角平分线的尺规作图

(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.

(2)分别以D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB内部交于点C.

(3)画射线OC.射线OC即为所求.【典型例题】类型一、全等三角形的判定3——“角边角”【高清课堂:379110全等三角形判定二,例5】 1、已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【答案与解析】证明:∵AD∥CB∴∠A=∠C在△ADF与△CBE中∴△ADF≌△CBE(ASA)∴AF=CE,AF+EF=CE+EF故得:AE=CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】(2014•青山区模拟)如图,已知AE=CF,∠AFD=∠CEB,AD∥BC,求证:△ADF≌△CBE.【答案】证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE;∵AD∥BC,∴∠A=∠C;在△ADF与△CBE中,,∴△ADF≌△CBE(ASA).类型二、全等三角形的判定4——“角角边”【高清课堂:379110全等三角形的判定二,例6】 2、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB,即∠BAC=∠EAD在△BAC和△EAD中∴△BAC≌△EAD(AAS)∴AC=AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD为△ABC的中线∴BD=CD

∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED和△CFD中∴△BED≌△CFD(AAS)∴BE=CF3、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【思路点拨】(1)证△ABO≌△CDO,得AO=OC,BO=DO(2)证△AEO≌△CFO或△BEO≌△DFO【答案与解析】证明:∵AB∥DC∴∠A=∠C在△ABO与△CDO中∴△ABO≌△CDO(AAS)∴AO=CO,BO=DO在△AEO和△CFO中∴△AEO≌△CFO(ASA)∴OE=OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型三、全等三角形判定的实际应用4、(2016秋•高邮市月考)如图,要测量河两岸相对两点A,B间的距离,先在过B点的AB的垂线l上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,这时,△ACB≌△ECD,ED=AB,测ED的长就得AB的长,判定△ACB≌△ECD的理由是()A.SASB.ASAC.SSSD.AAS【思路点拨】利用“角边角”证明△ABC和△EDC全等,根据全等三角形对应边相等可得ED=AB,从而得解.【答案与解析】解:∵AB⊥l,CD⊥l,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=DE,即ED的长就是AB的长,故选B.【总结升华】此题主要考查了全等三角形的应用,解答本题的关键是借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.举一反三:【变式】小明不慎将一块三角形的玻璃摔碎成如右图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第4块B.第3块C.第2块D.第1块【答案】C;类型四、角平分线的性质定理应用5.如图,∠ACB=90°,BD平分∠ABC交AC于D,DE⊥AB于E,ED的延长线交BC的延长线于F.求证:AE=CF【答案与解析】证明:∵BD平分∠ABC,DE⊥AB,DC⊥BF

∴DE=DC(角的平分线上的点到角两边的距离相等)

在△ADE和△FDC中

∴△ADE≌△FDC(ASA)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论