2024届河南省洛阳市洛龙区数学八上期末复习检测模拟试题含解析_第1页
2024届河南省洛阳市洛龙区数学八上期末复习检测模拟试题含解析_第2页
2024届河南省洛阳市洛龙区数学八上期末复习检测模拟试题含解析_第3页
2024届河南省洛阳市洛龙区数学八上期末复习检测模拟试题含解析_第4页
2024届河南省洛阳市洛龙区数学八上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省洛阳市洛龙区数学八上期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按图中所标注的数据,计算图中实线所围成的面积S是()A.50 B.62 C.65 D.682.如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中B点坐标是(8,2),D点坐标是(0,2),点A在x轴上,则菱形ABCD的周长是()A.2B.8C.8D.123.若分式的值为0,则x的值为()A.-3 B.- C. D.34.“等腰三角形两底角相等”的逆命题是()A.等腰三角形“三线合一”B.底边上高和中线重合的三角形等腰C.两个角互余的三角形是等腰三角形D.有两个角相等的三角形是等腰三角形5.如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是()A.1 B. C.ab D.a26.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60° C.70° D.80°7.若解关于的方程时产生增根,那么的值为()A.1 B.2 C.0 D.-18.某同学不小心把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是带③去,依据是()A.SSS B.SAS C.AAS D.ASA9.若关于的多项式含有因式,则实数的值为()A. B.5 C. D.110.下列各数中,不是无理数的是()A. B. C. D.11.下列计算正确的是()A.+= B.=4 C.3﹣=3 D.=12.若(b≠0),则=()A.0 B. C.0或 D.1或2二、填空题(每题4分,共24分)13.如图,△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,AB=16,BC=12,△ABC的面积为70,则DE=_________14.繁昌到南京大约150千米,由于开通了高铁,动车的的平均速度是汽车的2.5倍,这样乘动车到南京比坐汽车就要节省1.2小时,设汽车的平均速度为x千米/时,根据题意列出方程_____.15.如图,平面直角坐标系中有点A(0,1)、B(,0).连接AB,以A为圆心,以AB为半径画弧,交y轴于点P1;连接BP1,以B为圆心,以BP1为半径画弧,交x轴于点P2;连接P1P2,以P1为圆心,以P1P2为半径画弧,交y轴于点P3;按照这样的方式不断在坐标轴上确定点Pn的位置,那么点P6的坐标是_____.16.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.17.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.18.一个多边形的内角和比其外角和的2倍多180°,则该多边形的边数是______三、解答题(共78分)19.(8分)根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;1×1.(1)将以上各乘积分别写成“a2﹣b2”(两数平方)的形式,将以上10个乘积按照从小到大的顺序排列起来;(2)用含有a,b的式子表示(1)中的一个一般性的结论(不要求证明);(3)根据(2)中的一般性的结论回答下面问题:某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案方案:第一次提价p%,第二次提价q%;方案2:第一、二次提价均为%,其中p≠q,比较哪种方案提价最多?20.(8分)如图,在Rt△ABC中,∠B=90°.作出,∠BAC的平分线AM;要求:尺规作图,保留作图痕迹,不写作法若∠BAC的平分线AM与BC交于点D,且D=3,AC=10,则DAC的面积为______.21.(8分)如图,中,,,.(1)用直尺和圆规在边上找一点,使到的距离等于.(2)是的________线.(3)计算(1)中线段的长.22.(10分)学校组织学生到距离学校5的县科技馆去参观,学生小明因事没能乘上学校的班车,于是准备在校门口乘出租车去县科技馆,出租车收费标准如下:里程收费/元3以下(含3)8.003以上(每增加1)2.00(1)出租车行驶的里程为(,为整数),请用的代数式表示车费元;(2)小明身上仅有14元钱,够不够支付乘出租车到科技馆的车费?请说明理由.23.(10分)王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合.(1)求证:;(2)求两堵木墙之间的距离.24.(10分)先化简,再取一个你喜欢的的值带入并求值25.(12分)2019年11月26日,鲁南高铁日曲段正式开通,日照市民的出行更加便捷.从日照市到B市,高铁的行驶路线全程是600千米,普通列车的行驶路线全程是高铁的1.2倍.若高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间节省4小时,求高铁的平均速度.26.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分)整理,分析过程如下:成绩学生甲014500乙114211(1)两组数据的极差、平均数、中位数、众数、方差如下表所示,请补充完整:学生极差平均数中位数众数方差甲83.78613.21乙2483.78246.21(2)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙”),理由为.

参考答案一、选择题(每题4分,共48分)1、A【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△AGB,所以AF=BG,AG=EF;同理证得△BGC≌△CHD,GC=DH,CH=BG.故可求出FH的长,然后利用面积的割补法和面积公式即可求出图形的面积.【题目详解】∵如图,AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90º,∠EAF+∠BAG=90º,∠ABG+∠BAG=90º⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16−3×4−6×3=50.故选A.【题目点拨】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD.2、C【分析】连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B的坐标和点D的坐标得出OD=2,求出DE=4,AD=2,即可得出答案.【题目详解】连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AD==2,∴菱形的周长=4AD=8;故选:C.【题目点拨】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.3、D【分析】根据分式值为的条件进行列式,再解方程和不等式即可得解.【题目详解】解:∵分式的值为∴∴.故选:D【题目点拨】本题考查了分式值为的条件:分子等于零而分母不等于零,熟练掌握分式值为零的条件是解题的关键.4、D【分析】直接交换原命题的题设和结论即可得到正确选项.【题目详解】解:“等腰三角形两底角相等”的逆命题是有两个角相等的三角形是等腰三角形,故选:D.【题目点拨】本题考查互逆命题,解题的关键是掌握逆命题是直接交换原命题的题设和结论.5、B【解题分析】根据分式的基本性质对选项逐一判断即可.【题目详解】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选B.【题目点拨】本题考查了分式的基本性质:分式的分子与分母同时乘以或除以同一个不为零的数,分式的值不变.6、B【解题分析】分析:如图,连接BF,在菱形ABCD中,∵∠BAD=80°,∴∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=CD,∠ABC=180°﹣∠BAD=180°﹣80°=100°.∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°.∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°.∵在△BCF和△DCF中,BC=CD,∠BCF=∠DCF,CF=CF,∴△BCF≌△DCF(SAS).∴∠CDF=∠CBF=60°.故选B.7、A【分析】关于的方程有增根,那么最简公分母为0,所以增根是x=2,把增根x=2代入化为整式方程的方程即可求出未知字母的值.【题目详解】将原方程两边都乘(x-2)得:,整理得,∵方程有增根,∴最简公分母为0,即增根是x=2;把x=2代入整式方程,得m=1.故答案为:A.【题目点拨】本题考查了分式方程的增根,增根问题可按如下步骤进行:根据最简公分母确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.8、D【分析】根据全等三角形的判定方法即可进行判断.【题目详解】解:③保留了原三角形的两角和它们的夹边,根据三角形全等的判定方法ASA可配一块完全一样的玻璃,而①仅保留了一个角和部分边,②仅保留了部分边,均不能配一块与原来完全一样的玻璃.故选D.【题目点拨】本题考查的是全等三角形的判定,难度不大,掌握三角形全等的判定方法是解题的关键.9、C【分析】设,然后利用多项式乘多项式法则计算,合并后根据多项式相等的条件即可求出p的值.【题目详解】解:根据题意设,∴-p=-a-2,2a=-6,解得:a=-3,p=-1.故选:C.【题目点拨】此题考查了因式分解的意义,熟练掌握并灵活运用是解题的关键.10、A【分析】根据无理数是无限不循环小数解答即可.【题目详解】是分数,是有理数.故选:A【题目点拨】本题考查的是无理数的识别,掌握无理数的定义是关键.11、D【解题分析】解:A.与不能合并,所以A错误;B.,所以B错误;C.,所以C错误;D.,所以D正确.故选D.12、C【题目详解】解:∵,∴a(a-b)=0,∴a=0,b=a.当a=0时,原式=0;当b=a时,原式=故选C二、填空题(每题4分,共24分)13、5【分析】过点D作DF⊥BC于点F,根据角平分线定理得到DF=DE,根据图形可知,再利用三角形面积公式即可解答.【题目详解】如图,过点D作DF⊥BC于点F∵BD为∠ABC的平分线,DE⊥AB于点E,∴DF=DE∴故答案为:5【题目点拨】本题考点涉及角平分线定理和三角形的面积,熟练掌握以上知识点是解题关键.14、.【分析】设汽车的平均速度为x千米/时,则动车的平均速度为2.5x,根据题意可得:由乘动车到南京比坐汽车就要节省1.2小时,列方程即可.【题目详解】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,.故答案为:.【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.15、(27,0)【分析】利用勾股定理和坐标轴上点的坐标特征分别求出P1、P2、P3的坐标,然后利用坐标变换规律写出P4,P5,P6的坐标.【题目详解】解:由题意知OA=1,OB=,则AB=AP1==2,∴点P1(0,3),∵BP1=BP2==2,∴点P2(3,0),∵P1P3=P1P2==6,∴点P3(0,9),同理可得P4(9,0),P5(0,27),∴点P6的坐标是(27,0).故答案为(27,0).【题目点拨】本题考查了作图-复杂作图和规律探索,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了从特殊到一般的方法解决规律型问题的方法.16、35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=∠ABC,∠OCE=∠ACE,然后整理可得∠BOC=∠BAC.【题目详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=∠ABC,∠OCE=∠ACE,∴(∠BAC+∠ABC)=∠BOC+∠ABC,∴∠BOC=∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【题目点拨】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.17、1.【题目详解】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=1°,故答案为1.【题目点拨】本题考查平行线的性质,正确添加辅助线是解题关键.18、7【分析】设多边形的边数为n,根据多边形内角和公式及多边形外角和为360°,利用内角和比其外角和的2倍多180°列方程求出n值即可得答案.【题目详解】设多边形的边数为n,∵多边形的内角和比其外角和的2倍多180°,∴(n-2)×180°=2×360°+180°,解得:n=7,故答案为:7【题目点拨】此题主要考查了多边形内角和定理和外角和定理,若多边形的边数为n,则多边形的内角和为(n-2)×180°;多边形的外角和为360°;熟练掌握多边形的内角和公式是解题关键.三、解答题(共78分)19、(1)答案见解析;(2)对于:ab,当|b﹣a|越大时,ab的值越小;(3)方案2提价最多.【分析】(1)根据题目中的式子和平方差公式可以解答本题;(2)根据(1)中的计算结果,可以写出相应的结论;(3)根据题意列出代数式,根据(2)中的结论可以解答本题.【题目详解】(1)11×29=(1﹣9)×(1+9)=12﹣92,12×28=(1﹣8)×(1+8)=12﹣82,13×27=(1﹣7)×(1+7)=12﹣72,14×26=(1﹣6)×(1+6)=12﹣6215×25=(1﹣5)×(1+5)=12﹣52,16×24=(1﹣4)×(1+4)=12﹣4217×23=(1﹣3)×(1+3)=12﹣32,18×22=(1﹣2)×(1+2)=12﹣22,19×21=(1﹣1)×(1+1)=12﹣12,1×1=(1+2)×(1﹣2)=12﹣22,11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<1×1;(2)由(1)可得:对于ab,当|b﹣a|越大时,ab的值越小;(3)设原价为a,则方案1:a(1+p%)(1+q%)方案2:a(1)2∵|1+p%﹣(1+q%)|=|(p﹣q)%|,|1(1)|=2.∵p≠q,∴|(p﹣q)%|>2,∴由(2)的结论可知:方案2提价最多.【题目点拨】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.20、(1)作图见解析;(2)1.【分析】(1)利用基本作图,作∠BAC的平分线即可;(2)作DF⊥AC于F.利用角平分线的性质定理证明DF=DE=3,即可解决问题.【题目详解】(1)∠BAC的平分线AM如图所示;(2)作DF⊥AC于F.∵DA平分∠BAC,DB⊥BA,DF⊥AC,∴DB=DF=3,∴S△DAC=•AC•DF=×10×3=1,故答案为1.【题目点拨】本题考查作图-基本作图,角平分线的性质定理等知识,解题的关键是熟练掌握五种基本作图,学会添加常用辅助线.21、(1)画图见解析;(2)平分;(1)1.【分析】(1)作∠A的角平分线,以点A为圆心,任意半径画弧,再分别以交点为圆心,大于交点线段长度一半为半径画弧,将交点和点A连接,与BC的交点为点D,根据角平分线的性质即可得到,到的距离等于;(2)根据(1)可得,是平分线;(1)设,作于,则,因为直角三角形DEB,勾股定理列出方程即可求出答案.【题目详解】解:(1)利用角平分线的性质可得,角平分线的点到角两边距离相等,即作的角平分线,与的交点即为点.如图:(2)由(1)可得是的平分线.故填平分;(1)设,作于,则,,,,,,,,,即的长为.【题目点拨】本题主要考查了尺规作图,熟练角平分线的画法和性质以及勾股定理是解决本题的关键.22、(1);(2)够,理由详见解析.【分析】(1)因为里程3以下(含3)时,收费8.00元,3以上时,每增加1需多收费2.00元,所以出租车行驶的里程为(,为整数)时候,付给出租车的费用:;(2)令,求出出租车的费用,再与14作比较即可作出判断.【题目详解】解:(1)里程3以下(含3)时,收费8.00元,3以上时,每增加1需多收费2.00元..(2)够,理由如下:令,(元).由于小明身上仅有14元钱,大于需要支付乘出租车到科技馆的车费12元钱,故够支付乘出租车到科技馆的车费.【题目点拨】本题主要考查列代数式,解题的关键是根据题意写出相应的代数式进行求解.23、(1)证明见解析;(2)两堵木墙之间的距离为.【分析】(1)根据同角的余角相等可证,然后利用AAS即可证出;(2)根据题意即可求出AD和BE的长,然后根据全等三角形的性质即可求出DC和CE,从而求出DE的长.【题目详解】(1)证明:由题意得:,,∴,∴,∴在和中,∴;(2)解:由题意得:,∵,∴,∴,答:两堵木墙之间的距离为.【题目点拨】此题考查的是全等三角形的应用,掌握全等三角形的判定及性质是解决此题的关键.24、,x=1时值为1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论