




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省汕头潮阳区五校联考八年级数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知一个多边形的内角和是,则该多边形的边数为()A.4 B.6 C.8 D.102.能使分式有意义的条件是()A. B. C. D.3.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1 B.l2 C.l3 D.l44.如图,由8个全等的小长方形拼成一个大正方形,线段AB的端点都在小长方形的顶点上,若点C是某个小长方形的顶点,连接CA,CB,那么满足△ABC是等腰三角形的点C的个数是()A.3 B.4 C.5 D.65.圆柱形容器高为18,底面周长为24,在杯内壁离杯底4的处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁,离杯上沿2与蜂蜜相对的处,则蚂蚁从外壁处到内壁处的最短距离为()A.19 B.20 C.21 D.226.同学们都玩过跷跷板的游戏,如图是一个跷跷板的示意图,立柱OC与地面垂直,OA=OB.当跷跷板的一头A着地时,∠AOA′=50°,则当跷跷板的另一头B着地时,∠COB′等于()A.25° B.50° C.65° D.130°7.如图,在中,,,,则的度数为()A. B. C. D.8.四个长宽分别为,的小长方形(白色的)按如图所示的方式放置,形成了一个长、宽分别为、的大长方形,则下列各式不能表示图中阴影部分的面积是()A. B. C. D.9.下列代数式中,属于分式的是()A.-3 B. C. D.10.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么()A., B., C., D.,二、填空题(每小题3分,共24分)11.计算____.12.如图,中,,的周长是11,于,于,且点是的中点,则_______.13.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______人.14.如果一个三角形的两边长分别是2cm和7cm,且第三边为奇数,则三角形的周长是___cm.15.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为________.16.如图,已知,且,那么是的________(填“中线”或“角平分线”或“高”).17.计算:的结果是_____.18.如图所示,已知△ABC和△BDE均为等边三角形,且A、B、E三点共线,连接AD、CE,若∠BAD=39°,那么∠AEC=度.三、解答题(共66分)19.(10分)如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连结AD,作∠ADE=50°,DE交线段AC于点E.(1)若DC=2,求证:△ABD≌△DCE;(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.20.(6分)某茶叶经销商以每千克元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的,经试销发现,每天的销售量(千克)与销售单价(元/千克)符合一次函数,且时,;时,.(1)求一次函数的表达式.(2)若该商户每天获得利润为元,试求出销售单价的值.21.(6分)解下列方程组:(1)(2)22.(8分)如图,在中,点在线段上,.(1)求证:(2)当时,求的度数.23.(8分)某服务厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(I)买一套西装送一条领带;(II)西装和领带均按定价的90%付款.某超市经理现要到该服务厂购买西装20套,领带若干条(不少于20条).(1)设购买领带为x(条),采用方案I购买时付款数为y1(元),采用方案II购买时付款数为(元).分别写出采用两种方案购买时付款数与领带条数x之间的函数关系式;(2)就领带条数x讨论在上述方案中采用哪种方案购买合算.24.(8分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=15cm,BE=8cm,求DE的长.25.(10分)先化简,再求值:,其中.26.(10分)解不等式组:,并把它的解集在数轴上表示出来.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据多边形内角和定理,由已知多边形内角和为,代入得一元一次方程,解一次方程即可得出答案.【题目详解】多边形内角和定理为,,解得,所以多边形的边数为6,故选:B【题目点拨】利用多边形内角和定理,可以得到关于边数的一次方程式,列方程时注意度数,解简单的一次方程即可.2、B【解题分析】先根据分式有意义的条件列出关于的不等式,再求出的取值范围即可.【题目详解】解:∵分式有意义∴∴.故选:B.【题目点拨】本题考查分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题关键.3、C【分析】根据轴对称图形的定义进行判断即可得到对称轴.【题目详解】解:观察可知沿l1折叠时,直线两旁的部分不能够完全重合,故l1不是对称轴;沿l2折叠时,直线两旁的部分不能够完全重合,故l2不是对称轴;沿l3折叠时,直线两旁的部分能够完全重合,故l3是对称轴,所以该图形的对称轴是直线l3,故选C.【题目点拨】本题主要考查了轴对称图形,关键是掌握轴对称图形的定义.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4、D【分析】根据等腰三角形的判定即可得到结论.【题目详解】解:如图所示,使△ABP为等腰三角形的点P的个数是6,
故选:D.【题目点拨】本题考查了等腰三角形的判定,正确的找出符合条件的点P是解题的关键.5、B【分析】将杯子侧面展开,作A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【题目详解】解:如图,将杯子侧面展开,作A关于EF的对称点A′,
连接A′B,则A′B即为最短距离,
在直角△A′DB中,由勾股定理得
A′B===20(cm).
故选B.【题目点拨】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.6、C【分析】根据等腰三角形的性质即可得到结论.【题目详解】解:∵OA=OB=AB,∴OA′=OB′=A′B′,∵AB=A′B′,∴OA=OB′,∵∠AOA′=50°,∴∠AOB′=180°﹣50°=130°,∵OC⊥AB′,∴∠COB′==65°,故选C.【题目点拨】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.7、B【分析】由题中条件可得,即,可由与、的差表示,进而求解即可.【题目详解】∵,∴,在和中∴(SAS),∴,,∵.∴,∴.故选B.【题目点拨】考查了全等三角形的判定及性质,解题关键是熟记其判定和性质,并灵活运用解题问题.8、B【分析】根据阴影部分的面积为大长方形去掉四个小长方形,再根据图形找到m=a+2b进行代换即可判断.【题目详解】阴影部分的面积是:大长方形去掉四个小长方形为:,故A正确;由图可知:m=a+2b,所以,故B错误;由图可知:m=a+2b,所以,故C正确;由图可知:m=a+2b,所以,故D正确.故选:B【题目点拨】本题考查的是列代数式表示阴影部分的面积,从图形中找到m=a+2b并进行等量代换是关键.9、C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:-3;;是整式;符合分式的概念,是分式故选:C【题目点拨】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.10、B【解题分析】由题意得,函数y=kx+b的图象经过第一、三、四象限,k>0,b<0,故选B.【题目点拨】本题考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.二、填空题(每小题3分,共24分)11、【分析】设把原式化为,从而可得答案.【题目详解】解:设故答案为:【题目点拨】本题考查的是利用平方差公式进行简便运算,掌握平方差公式是解题的关键.12、【分析】根据直角三角形斜边上的中线等于斜边的一半可得,,通过计算可求得AB,再利用勾股定理即可求得答案.【题目详解】∵AF⊥BC,BE⊥AC,D是AB的中点,
∴,∵AB=AC,AF⊥BC,
∴点F是BC的中点,∴,
∵BE⊥AC,
∴,∴的周长,
∴,在中,即,解得:.故答案为:.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质以及勾股定理,熟记各性质是解题的关键.13、35【解题分析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),则本次捐款20元的有:80−(20+10+15)=35(人),故答案为35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.14、16【分析】根据三角形的三边关系定理求出第三边的长,即可得出结论.【题目详解】∵7﹣2<第三边<7+2,∴5<第三边<1.∵第三边为奇数,∴第三边=7,所以三角形的周长是2+7+7=16(cm).故答案为16cm.【题目点拨】首先根据题意求出第三边,然后再求出周长.15、(a+b)2﹣(a﹣b)2=4ab【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【题目详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【题目点拨】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.16、中线【分析】通过证明,可得,从而得证是的中线.【题目详解】∵∴∵,∴∴∴是的中线故答案为:中线.【题目点拨】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理是解题的关键.17、【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【题目详解】===(5-4)2018×=+2,故答案为+2.【题目点拨】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.18、21【分析】根据△ABC和△BDE均为等边三角形,可得∠ABC=∠DBE=60°,AB=BC,BE=BD,由此证明∠CBD=60°,继而得到∠ABD=∠CBE=120°,即可证明△ABD≌△CBE,所以∠ADB=∠AEC,利用三角形内角和代入数值计算即可得到答案.【题目详解】解:∵△ABC和△BDE均为等边三角形,
∴∠ABC=∠DBE=60°,AB=BC,BE=BD,
∴∠CBD=60°,
∴∠ABD=∠CBE=120°,
在△ABD和△CBE中,∴△ABD≌△CBE,(SAS)
∴∠AEC=∠ADB,
∵∠ADB=180°-∠ABD-∠BAD=21°,
∴∠AEC=21°.【题目点拨】此题主要考查了三边及其夹角对应相等的两个三角形全等的判定方法以及全等三角形的对应角相等的性质,熟记特殊三角形的性质以及证明△ABD≌△CBE是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)可以,115°或100°.【分析】(1)利用公共角求得∠ADB=∠DEC,DC=AB,∠B=∠C,所以利用AAS,证明△ABD≌△DCE.(2)可以令△ADE是等腰三角形,需要分类讨论:(1)中是一种类型,EA=ED也是一种类型,可分别求出∠BDA度数.【题目详解】证明:(1)∵AB=AC=2,DC=2,∴AB=DC,∵∠B=∠C=50°,∠ADE=50°,∴∠BDA+∠CDE=130°,∠CED+∠CDE=130°,∴∠BDA=∠CED,∴△ABD≌△DCE(AAS).(2)解:可以.有以下三种可能:①由(1)得:△ABD≌△DCE,得AD=DE.则有∠DAE=∠DEA=65°∴∠BDA=∠CED=65°+50°=115°;②由(1)得∠BDA=∠CED,∵点D在线段BC上运动(点D不与B、C重合)∴;③当EA=ED时,∠EAD=∠ADE=50°,∴∠BDA=∠CED=50°+50°=100°.20、(1).(2).【分析】(1)用待定系数法即可求得;(2)根据商户每天获得利润为元,列方程求解.【题目详解】解:(1)将、和、代入,得:,解得:,.(2)根据题意得:,解得:或,而,所以,.【题目点拨】本题考查待定系数法求函数解析式,一元二次方程的应用,比较综合,找准等量关系是关键.21、(1);(2)【分析】(1)利用加减消元法,消去x,求出y的值,然后代入计算,即可得到方程组的解;(2)先把方程组进行整理,然后利用加减消元法进行求解,即可得到方程组的解.【题目详解】解:得:得:得:将代入得:,这个方程组的解为;由得:由得:得:,将代入得:,这个方程组的解为.【题目点拨】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.22、(1)详见解析;(2)【分析】(1)根据等边对等角可得∠B=∠C,然后利用SAS即可证出结论;(2)根据全等三角形的性质可得然后求出,即可求出结论.【题目详解】解:(1)证明:∴∠B=∠C在和中,,(2)由(1)知【题目点拨】此题考查的是等腰三角形的性质和全等三角形的判定及性质,掌握等边对等角和全等三角形的判定及性质是解决此题的关键.23、(1)yI=40x+3200(x≥20);yII=36x+3600(x≥20);(2)买1条领带时,可采用两种方案之一;购买领带超过1条时,采用方案II购买合算;购买领带20条以上不超过1条时,采用方案I购买合算【分析】(1)根据两种方案的购买方法即可列式计算得到答案;(2)先计算yI=yII时的x值,再分析超过1条时和20条以上不超过1条时的购买方案.【题目详解】解:(1)yI=200×20+(x﹣20)×40=40x+3200(x≥20)yII=200×20×90%+x×40×90%=36x+3600(x≥20).(2)当yI=yII时,40x+3200=36x+3600,解得x=1.即:买1条领带时,可采用两种方案之一.当yI>yII时,40x+3200>36x+3600,解得x>1,即购买领带超过1条时,采用方案II合算.当yI<yII时,40x+3200<36x+3600,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业四新教育培训课件
- 农村线路简单改造方案
- 霹雳贝贝考试题及答案
- 站层级建设方案模板
- 出租车行业安全管理与责任合同
- 2026版《全品高考》选考复习方案生物802 第23讲 第1课时 神经调节的结构基础和基本方式 含答案
- 超市调料干货定价方案
- 急重症患儿的护理
- 投标文件产品供货方案
- 农村吊桥改造方案
- 2025年中国陪诊服务行业现状、发展环境及投资前景分析报告
- 电子病历信息安全管理制度
- 北师大版小学数学六年级上册第一单元圆《欣赏与设计》公开课 教学课件
- 2024高考数学专项复习:均值不等式及不等式综合(含答案)
- 斑秃完整版本
- 一年级数学计算题专项练习1000题汇编
- 2024钢琴购销合同模板
- 城市桥梁养护技术规范
- 社会单位消防安全风险自查评估报告表模板
- 保护性约束患者的护理课件
- 健康体检医疗服务 投标方案(技术方案)
评论
0/150
提交评论