2024届四川省成都市金牛区八上数学期末教学质量检测试题含解析_第1页
2024届四川省成都市金牛区八上数学期末教学质量检测试题含解析_第2页
2024届四川省成都市金牛区八上数学期末教学质量检测试题含解析_第3页
2024届四川省成都市金牛区八上数学期末教学质量检测试题含解析_第4页
2024届四川省成都市金牛区八上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市金牛区八上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△中,,是中点,下列结论,不一定正确的是()A. B.平分 C. D.2.甲乙两地铁路线长约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为千米/时,根据题意,可得方程()A. B.C. D.3.下列实数为无理数的是()A.0.101 B. C. D.4.在中,,,第三边的取值范围是()A. B. C. D.5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为41,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=41;②a-b=2;③2ab=45;④a+b=1.其中正确的结论是()A.①②③ B.①②③④ C.①③ D.②④6.如图,在同一直线上,≌,,,则的值为()A. B. C. D.7.如图,在中,是的平分线,且,若,则的大小为()A. B. C. D.8.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.44° B.66° C.96° D.92°9.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OP10.根据如图数字之间的规律,问号处应填()A.61 B.52 C.43 D.3711.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°12.如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是()A. B. C. D.二、填空题(每题4分,共24分)13.若是一个完全平方式,则m=________14.若最简二次根式与可以合并,则a=____.15.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交的延长线于点F,垂足为点E,且BE=3,则AD=____.16.若边形的每个外角均为,则的值是________.17.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,则m_____n.(填“>”或“<”)18.下列组数:,﹣,﹣,,3.131131113…(相邻两个3之间依次多一个1),无理数有________个.三、解答题(共78分)19.(8分)列分式方程解应用题元旦期间,甲、乙两位好友约着一起开两辆车自驾去黄山玩,其中面包车为领队,小轿车紧随其后,他们同时出发,当面包车行驶了200千米时,发现小轿车只行驶了180千米,若面包车的行驶速度比小轿车快10千米/小时,请问:(1)小轿车和面包车的速度分别多少?(2)当小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面100千米的地方碰头,他们正好同时到达,请问小轿车需要提速多少千米/小时?(3)小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面s千米的地方碰头,他们正好同时到达,请问小轿车提速千米/小时.(请你直接写出答案即可)20.(8分)如图,在方格纸上有三点A、B、C,请你在格点上找一个点D,作出以A、B、C、D为顶点的四边形并满足下列条件.(1)使得图甲中的四边形是轴对称图形而不是中心对称图形.(2)使得图乙中的四边形不是轴对称图形而是中心对称图形.(3)使得图丙中的四边形既是轴对称图形又是中心对称图形.21.(8分)几个小伙伴打算去音乐厅观看演出,他们准备用元钱购买门票,下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴的人数.22.(10分)一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,梯子的顶端下滑2米后,底端将水平滑动2米吗?试说明理由.23.(10分)已知直线与直线.(1)求两直线交点的坐标;(2)求的面积.(3)在直线上能否找到点,使得,若能,请求出点的坐标,若不能请说明理由.24.(10分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工程所需的时间比是5:3,两队共同施工15天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工15天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?25.(12分)如图,在的正方形网格中,每个小正方形的边长为,小正方形的顶点叫做格点,连续任意两个格点的线段叫做格点线段.(1)如图1,格点线段、,请添加一条格点线段,使它们构成轴对称图形.(2)如图2,格点线段和格点,在网格中找出一个符合的点,使格点、、、四点构成中心对称图形(画出一个即可).26.(1)分解因式:3ax2+6axy+3ay2(2)化简:

参考答案一、选择题(每题4分,共48分)1、C【分析】根据等边对等角和等腰三角形三线合一的性质解答.【题目详解】解:∵AB=AC,

∴∠B=∠C,

∵AB=AC,D是BC中点,

∴AD平分∠BAC,AD⊥BC,

所以,结论不一定正确的是AB=2BD.

故选:C.【题目点拨】本题考查了等腰三角形的性质,主要利用了等边对等角的性质以及等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.2、C【分析】设原来高铁的平均速度为x千米/时,则提速后的平均速度为1.8x,根据题意可得:由甲到乙的行驶时间比原来缩短了1.5小时,列方程即可.【题目详解】解:设原来火车的平均速度为x千米/时,则提速后的平均速度为1.8x,由题意得,.故选C.【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.3、D【解题分析】由题意根据无理数的概念即无理数就是无限不循环小数,进行分析判断可得答案.【题目详解】解:A、0.101是有理数,B、=3是有理数,C、是有理数,D、是无限不循环小数即是无理数,故选:D.【题目点拨】本题考查的是无理数的概念、掌握算术平方根的计算方法是解题的关键.4、D【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边的边长的取值范围.【题目详解】∵AB=3,AC=5,∴5-3<BC<5+3,即2<BC<8,故选D.【题目点拨】考查了三角形三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握三角形的三边关系是解题关键.5、A【分析】观察图形可知,大正方形的边长为直角三角形的斜边长,根据勾股定理即可得到大正方形的边长,从而得到①正确,根据题意得4个直角三角形的面积=4××ab=大正方形的面积-小正方形的面积,从而得到③正确,根据①③可得②正确,④错误.【题目详解】解:∵直角三角形较长直角边长为a,较短直角边长为b,∴斜边的平方=a2+b2,由图知,大正方形的边长为直角三角形的斜边长,∴大正方形的面积=斜边的平方=a2+b2,即a2+b2=41,故①正确;根据题意得4个直角三角形的面积=4××ab=2ab,4个直角三角形的面积=S大正方形-S小正方形=41-4=45,即2ab=45,故③正确;由①③可得a2+b2+2ab=41+45=14,即(a+b)2=14,∵a+b>0,∴a+b=,故④错误,由①③可得a2+b2-2ab=41-45=4,即(a-b)2=4,∵a-b>0,∴a-b=2,故②正确.故选A.【题目点拨】本题考查了勾股定理的运用,完全平方公式的运用等知识.熟练运用勾股定理是解题的关键.6、C【分析】设BD=x,根据全等的性质得到BC=x,故BE=AB=x+2,再根据得到方程即可求解.【题目详解】设BD=x∵≌∴BD=BC=x∴BE=AB=x+2,∵∴AB+BD=8,即x+2+x=8解得x=3∴=EC×BD=×2×3=3故选C.【题目点拨】此题主要考查全等的性质,解题的关键是熟知三角形的性质及三角形的面积公式.7、B【分析】在AB上截取AC′=AC,连接DC′,由题知AB=AC+CD,得到DC=C′B,可证得△ADC≌△ADC′,即可得到△BDC′是等腰三角形,设∠B=x,利用三角形的内角和公式即可求解.【题目详解】解:在AB上截取AC′=AC,连接DC′如图所示:∵AB=AC+CD∴BC′=DC∵AD是∠BAC的角平分线∴∠C′AD=∠DAC在△ACD和△AC′D中∴△ACD≌△AC′D∴C′D=DC,∠ACD=∠AC′D∴DC′=BC′∴△BC′D是等腰三角形∴∠C′BD=∠C′DB设∠C′BD=∠C′DB=x,则∠ACD=∠AC′D=2x∵∠BAC=81°∴x+2x+81°=180°解得:x=33°∴∠ACB=33°×2=66°故选:B.【题目点拨】本题主要考查的是全等三角形的判定以及角平分线的性质,掌握全等三角形的判定和角平分线的性质是解题的关键.8、C【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=42°,根据三角形内角和定理计算即可.【题目详解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=42°,∴∠P=180°﹣∠A﹣∠B=96°,故选C.【题目点拨】此题主要考查利用等腰三角形的性质判定三角形全等,以及三角形的外教性质和内角和定理的运用,熟练掌握,即可解题.9、D【题目详解】∵∠1=∠2,PD⊥OA,PE⊥OB,∴PD=PE,∵OP=OP,∴Rt△POE≌Rt△POD(HL),∴OD=OE,∠DPO=∠EPO.∴A、B、C正确,D错误,故选D10、A【分析】由图可知每个圆中的规律为左边与上边对应的数相乘得到的积再加上右边的数,所得结果为最下边的数.【题目详解】∵由图可知每个圆中的规律为:1×2+2=4,2×3+3=9,3×5+4=19,4×7+5=33,∴最后一个圆中5×11+6=1,∴?号所对应的数是1.故选:A.【题目点拨】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.11、B【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【题目详解】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.【题目点拨】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12、A【分析】根据一次函数y=ax+b和正比例函数y=kx的图象可知,点P就是一次函数y=ax+b和正比例函数y=kx的交点,即二元一次方程组的解【题目详解】解:根据题意可知,二元一次方程组的解就是一次函数函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例函数y=kx的图象,得二元一次方程组的解是.故选A.【题目点拨】此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例函数y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.二、填空题(每题4分,共24分)13、±1【分析】利用完全平方公式的结构特征可确定出m的值.【题目详解】解:∵多项式是一个完全平方式,∴m=±2×1×4,即m=±1,故答案为:±1.【题目点拨】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.14、1【分析】由于两个最简二次根式可以合并,因此它们是同类二次根式,即被开方数相同.由此可列出一个关于a的方程,解方程即可求出a的值.【题目详解】解:由题意,得1+2a=5−2a,解得a=1.故答案为1.【题目点拨】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15、1【分析】由题意易证△ACD≌△BCF,△BAE≌△FAE,然后根据三角形全等的性质及题意可求解.【题目详解】解:AD平分∠BAC,BE⊥AD,∠BAE=∠FAE,∠BEA=∠FEA=90°,AE=AE,△BAE≌△FAE,BE=EF,BE=3,BF=1,∠ACB=90°,∠F+∠FBC=90°,∠EAF+∠F=90°,∠ACD=∠BCF=90°,∠FBC=∠DAC,AC=BC,△ACD≌△BCF,AD=BF=1;故答案为1.【题目点拨】本题主要考查全等三角形的性质与判定,熟练掌握三角形全等判定的条件是解题的关键.16、【解题分析】用360°除以每一个外角的度数求出边数即可【题目详解】360°÷120°=3故答案为3【题目点拨】此题考查多边形的内角与外角,难度不大17、>【解题分析】将点A,点B坐标代入可求m,n的值,即可比较m,n的大小.【题目详解】解:∵一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,∴m=﹣2a+1,n=﹣2a﹣1∴m>n故答案为>【题目点拨】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.18、1.【解题分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【题目详解】无理数有:-π,,1.111111111…(相邻两个1之间依次多一个1),共有1个.故答案为:1.【题目点拨】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.三、解答题(共78分)19、(1)小轿车的速度是90千米/小时,面包车的速度是100千米/小时;(2)小轿车需要提速30千米/小时;(3)【分析】(1)设小轿车的速度是x千米/小时,由题意可列出分式方程即可求解;(2)设小轿车需要提速a千米/小时,由题意可列出分式方程即可求解;(3)设小轿车需要提速b千米/小时,把(2)中100千米换成s即可求解.【题目详解】(1)解:设小轿车的速度是x千米/小时,由题意列方程得:解得x=90经检验x=90是原方程的解,x+10=100答:小轿车的速度是90千米/小时,面包车的速度是100千米/小时.(2)解:设小轿车需要提速a千米/小时,由题意列方程得解得:a=30经检验a=30是原方程的解答:小轿车需要提速30千米/小时.(3)设小轿车需要提速b千米/小时,由题意列方程得解得b=经检验a=是原方程的解故小轿车需要提速千米/小时故答案为:.【题目点拨】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程求解.20、见解析【分析】(1)利用轴对称图形的性质得出符合题意的图形即可;(2)利用中心对称图形的性质得出符合题意的图形即可;(3)利用轴对称图形以及中心对称图形的性质得出即可.【题目详解】【题目点拨】本题考查利用轴对称设计图案以及利用利用旋转设计图案,熟练掌握轴对称图形的性质以及中心对称图形的性质是解题关键.21、8人【分析】设小伙伴的人数为人,根据图中所给的信息,从左图可以得到票价为:,右图可以知道票价打七折之后为:,根据折扣列方程求解即可.【题目详解】解:设小伙伴的人数x人,依题意得解得经检验:是原方程的解答:小伙伴的人数为8人.【题目点拨】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.22、梯子的顶端下滑2米后,底端将水平滑动2米【解题分析】根据题意两次运用勾股定理即可解答【题目详解】解:由题意可知,AB=10m,AC=8m,AD=2m,在Rt△ABC中,由勾股定理得BC===6;当B划到E时,DE=AB=10m,CD=AC﹣AD=8﹣2=6m;在Rt△CDE中,CE===8,BE=CE﹣BC=8﹣6=2m.答:梯子的顶端下滑2米后,底端将水平滑动2米.【题目点拨】本题考查了勾股定理的应用,根据两边求第三边是解决问题的关键23、(1);(2)2;(3)点有两个,坐标为或.【分析】(1)将直线y=2x+3与直线y=-2x-1组成方程组,求出方程组的解即为C点坐标;(2)求出A、B的坐标,得到AB的长,再利用C点横坐标即可求出△ABC的面积;(3)设P点坐标为,则由点在线段的延长线上和点在线段的延长线上两种情况分别求解.【题目详解】(1)联立方程组,得:得:;则点;(2)∵直线与轴交于点,∴∵直线与轴交于点,∴,∴,∴;(3)在直线上能找到点,使得.设点的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论