2024届河北省邯郸市第十一中学八年级数学第一学期期末学业质量监测试题含解析_第1页
2024届河北省邯郸市第十一中学八年级数学第一学期期末学业质量监测试题含解析_第2页
2024届河北省邯郸市第十一中学八年级数学第一学期期末学业质量监测试题含解析_第3页
2024届河北省邯郸市第十一中学八年级数学第一学期期末学业质量监测试题含解析_第4页
2024届河北省邯郸市第十一中学八年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省邯郸市第十一中学八年级数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.方差:一组数据:2,,1,3,5,4,若这组数据的中位数是3,是这组数据的方差是()A.10 B. C.2 D.2.下列因式分解正确的是()A. B.C. D.3.一次函数上有两点和,则与的大小关系是()A. B. C. D.无法比较4.在中,的对边分别是,下列条件中,不能说明是直角三角形的是()A. B.C. D.5.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP,并廷长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④若AD=2dm,则点D到AB的距离是1dm⑤S△DAC:S△DAB=1:2A.2 B.3 C.4 D.56.下列各式由左边到右边的变形中,是分解因式的是A. B.C. D.7.如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F8.如图,在平面直角坐标系中,点P坐标为(-4,3),以点B(-1,0)为圆心,以BP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-6和-5之间 B.-5和-4之间 C.-4和-3之间 D.-3和-2之间9.关于的分式方程,下列说法正确的是()A.方程的解是 B.时,方程的解是正数C.时,方程的解为负数 D.无法确定10.国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2020B2020C2020C2019中的点B2020的坐标为_____.12.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.13.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.14.如图,在,,点是上一点,、分别是线段、的垂直平分线,则________.15.如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为_____.16.如图,已知点是直线外一点,是直线上一点,且,点是直线上一动点,当是等腰三角形时,它的顶角的度数为________________.17.如图,△ABC≌△DEC,∠ACD=28°,则∠BCE=_____°.18.如果一粒芝麻约有0.000002千克,那么10粒芝麻用科学记数法表示为_______千克.三、解答题(共66分)19.(10分)2019年11月是全国消防安全月,市南区各学校组织了消防演习和消防知识进课堂等一系列活动,为更好的普及消防知识,了解本次系列活动的持续效果,学校团委在活动启动前以及活动结束后,分别对全校2000名学生进行了两次消防知识竞答活动,并随机抽取部分学生的答题情况,绘制成统计图表(部分)如图所示:根据调查的信息分析:(1)补全条形统计图;(2)活动启动前抽取的部分学生答对题数的中位数为_________;(3)请估计活动结束后该校学生答刘9道(含9道)以上的人数;(4)选择适当的统计量分析两次调查的相关数据,评价该校消防安全月系列活动的效果.系列活动结束后知识竞答活动答题情况统计表答对题数(道)78910学生数(人)23102520.(6分)如图,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.21.(6分)两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?22.(8分)如图,在中,D是的中点,,垂足分别是.求证:AD平分.23.(8分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.点P是y轴上一点.(1)写出下列各点的坐标:点A(,)、点B(,)、点C(,);(2)若S△COP=S△COA,请求出点P的坐标;(3)当PA+PC最短时,求出直线PC的解析式.24.(8分)如图所示,∠A=∠D=90°,AB=DC,AC,BD相交于点M,求证:(1)∠ABC=∠DCB;(2)AM=DM.25.(10分)如图,平面直角坐标系中,A,B,以B点为直角顶点在第二象限内作等腰Rt△ABC.(1)求点C的坐标;(2)求△ABC的面积;(3)在y轴右侧是否存在点P,使△PAB与△ABC全等?若存在,直接写出点P的坐标,若不存在,请说明理由.26.(10分)如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)(1)写出k、b满足的关系;(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】先根据中位数是3,得到数据从小到大排列时与3相邻,再根据中位数的定义列方程求解即得的值,最后应用方差计算公式即得.【题目详解】∵这组数据的中位数是3∴这组数据按照从小到大的排列顺序应是1,2,,3,4,5或1,2,3,,4,5∴解得:∴这组数据是1,2,3,3,4,5∴这组数据的平均数为∵∴故选:B.【题目点拨】本题考查了中位数的定义和方差的计算公式,根据中位数定义应用方程思想确定的值是解题关键,理解“方差反映一组数据与平均值的离散程度”有助于熟练掌握方差计算公式.2、D【分析】分别把各选项分解因式得到结果,逐一判断即可.【题目详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.,故本选项不符合题意;D.,故本选项符合题意;故选:D【题目点拨】此题考查了因式分解-十字相乘法,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、B【分析】由点两点(-1,y1)和(1,y1)的横坐标利用一次函数图象上点的坐标特征,可求出y1、y1的值,比较后即可得出结论.【题目详解】∵一次函数y=-1x+3上有两点(1,y1)和(-1019,y1),∴y1=-1×1+3=1,y1=-1×(-1019)+3=4041,∴y1<y1.故选:B.【题目点拨】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,求出y1、y1的值是解题的关键.4、C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【题目详解】解:A、由得a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B、由得∠C+∠B=∠A,此时∠A是直角,能够判定△ABC是直角三角形,不符合题意;C、∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形,故此选项符合题意;D、a:b:c=5:12:13,此时c2=b2+a2,符合勾股定理的逆定理,△ABC是直角三角形,不符合题意;故选:C.【题目点拨】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.5、D【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;

②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;

③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;

④作DH⊥AB于H,由∠1=∠2,DC⊥AC,DH⊥AB,推出DC=DH即可解决问题;

⑤利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【题目详解】解:①根据作图的过程可知,AD是∠BAC的平分线,故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④作DH⊥AB于H,∵∠1=∠2,DC⊥AC,DH⊥AB,∴DC=DH,在Rt△ACD中,CD=AD=1dm,∴点D到AB的距离是1dm;故④正确,⑤在Rt△ACB中,∵∠B=30°,∴AB=2AC,∴S△DAC:S△DAB=AC•CD:•AB•DH=1:2;故⑤正确.综上所述,正确的结论是:①②③④⑤,共有5个.故选:D.【题目点拨】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时,需要熟悉等腰三角形的判定与性质.6、C【解题分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【题目详解】解:A、是多项式乘法,不是分解因式,故本选项错误;

B、是提公因式法,不是分解因式,故本选项错误;

C、右边是积的形式,故本选项正确.D、没有把一个多项式化为几个整式的积的形式,错误.

故选:C.【题目点拨】此题考查了因式分解的意义;这类问题的关键在于能否正确应用分解因式的定义来判断.7、C【解题分析】试题分析:根据全等三角形的判定定理,即可得出:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;添加∠A=∠D,根据ASA,可证明△ABC≌△DEF,故B都正确;添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确.故选C.考点:全等三角形的判定.8、A【解题分析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【题目详解】∵点P坐标为(-4,3),点B(-1,0),

∴OB=1,

∴BA=BP==3,

∴OA=3+1,

∴点A的横坐标为-3-1,

∵-6<-3-1<-5,

∴点A的横坐标介于-6和-5之间.

故选A.【题目点拨】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解题的关键.9、C【解题分析】方程两边都乘以-5,去分母得:=-5,解得:=+5,∴当-5≠0,把=+5代入得:+5-5≠0,即≠0,方程有解,故选项A错误;当>0且≠5,即+5>0,解得:>-5,则当>-5且≠0时,方程的解为正数,故选项B错误;当<0,即+5<0,解得:<-5,则<-5时,方程的解为负数,故选项C正确;显然选项D错误.故选C.10、A【分析】根据轴对称图形的定义和图案特点即可解答.【题目详解】A、是轴对称图形,故选项正确;

B、不是轴对称图形,故本选项错误;

C不是轴对称图形,故选项错误;

D、不是轴对称图形,故本选项错误.

故选A.【题目点拨】此题考查轴对称图形的概念,解题关键在于掌握其定义和识别图形.二、填空题(每小题3分,共24分)11、(22020﹣1,22019)【分析】求出直线y=x+1与x轴、y轴的交点坐标,进而确定第1个正方形的边长,再根据等腰直角三角形的性质,得出第2个、第3个……正方形的边长,进而得出B1、B2、B3……的坐标,根据规律得到答案.【题目详解】解:直线y=x+1与x轴,y轴交点坐标为:A1(0,1),即正方形OA1B1C1的边长为1,∵△A1B1A2、△A2B2A3,都是等腰直角三角形,边长依次为1,2,4,8,16,∴B1(1,1),B2(3,2),B3(7,4),B4(15,8),即:B1(21﹣1,20),B2(22﹣1,21),B3(23﹣1,22),B4(24﹣1,23),故答案为:B2020(22020﹣1,22019).【题目点拨】考查一次函数的图象和性质,正方形的性质、等腰直角三角形的性质以及找规律等知识,探索和发现点B的坐标的概率是得出答案的关键.12、1.【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【题目详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=1.故其周长为1.故答案为:1.【题目点拨】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.13、3【分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【题目详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【题目点拨】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.14、【分析】根据、分别是线段、的垂直平分线,得到BE=DE,DF=CF,由等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,根据三角形的内角和得到∠B+∠C=180−∠A,根据平角的定义即可得到结论.【题目详解】∵、分别是线段、的垂直平分线,∴BE=DE,DF=CF,∴∠EDB=∠B,∠FDC=∠C,∵,∴∠EDB+∠FDC=180−,∴∠B+∠C=100,∴∠A=180-100=80,故答案为:80.【题目点拨】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.15、8或2或2【题目详解】分三种情况计算:(1)当AE=AF=4时,如图:∴S△AEF=AE•AF=×4×4=8;(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF=,∴S△AEF=•AE•BF=×4×=2;(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF=,∴S△AEF=AE•DF=×4×=2;16、或或【分析】分AB边为腰或底画出图形求解即可.【题目详解】①当AB为腰时,如图,在△ABP1中,AB=AP1,此时顶角∠BAP1的度数为:20°;在△ABP2中,AB=BP2,此时顶角∠ABP2的度数为:180°-20°×2=140°;在△ABP3中,AB=BP3,此时顶角∠BAP3的度数为:180°-20°=160°;②当AB为底时,如图,在△ABP4中,AP4=BP4,此时顶角∠BAP4的度数为:180°-20°×2=140°.故答案为:或或.【题目点拨】此题主要考查了等腰三角形的判定以及三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.17、1【分析】根据全等三角形对应角相等可得∠ACB=∠DCE,再根据等式的性质两边同时减去∠ACE可得结论.【题目详解】证明:∵△ABC≌△DEC,∴∠ACB=∠DCE,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,即∠ACD=∠BCE=1°.故答案是:1.【题目点拨】本题考查了全等三角形的性质,三角形的内角和定理的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等.18、2×10-1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.000002×10=0.000020.00002用科学记数法表示为2×10-1千克,故答案为:2×10-1.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共66分)19、(1)补全图形见解析;(2)9道;(3)1750人;(4)由活动开始前后的中位数和众数看,学生的消防知识明显提高,这次活动举办后的效果比较明显(答案不唯一,合理即可).【分析】(1)先根据活动启动前答对7道的人数及其所占百分比求出总人数,再用总人数乘以答对8道人数对应的百分比可得其人数,从而补全图形;

(2)根据中位数的概念求解即可;

(3)用总人数乘以样本中活动结束后竞答活动答对9道及以上人数所占比例即可;

(4)可从中位数和众数的角度分析求解(答案不唯一,合理即可).【题目详解】解:(1)∵被调查的总人数为8÷20%=40(人),

∴答对8题的有40×25%=10(人),

补全图形如下:

(2)活动启动前抽取的部分学生答对题数的中位数为:(道);

故答案为:9道;

(3)估计活动结束后该校学生答对9道(含9道)以上的人数为;

(4)活动启动之初的中位数是9道,众数是9首,

活动结束后的中位数是10道,众数是10道,

由活动开始前后的中位数和众数看,学生的消防知识明显提高,这次活动举办后的效果比较明显.【题目点拨】本题考查扇形统计图和条形统计图信息关联,用样本估计总体,选择合适的统计量决策.解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、∠D=45°;∠AED=70°;∠BFE=115°.【解题分析】根据直角三角形两锐角互余列式求解即可得到∠D,根据在同一平面内垂直于同一直线的两直线互相平行可得AB∥CD,再根据两直线平行,内错角相等可得∠AED=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BFE=∠D+∠AED.【题目详解】∵DC⊥BC,∠DBC=45°,∴∠D=90°﹣∠DBC=90°﹣45°=45°;∵AB⊥BC,DC⊥BC,∴AB∥DC,∴∠AED=∠A=70°;在△DEF中,∠BFE=∠D+∠AED=45°+70°=115°.【题目点拨】本题考查了三角形的内角和定理,三角形外角的性质,熟记定理与性质并准确识图是解题的关键.21、不重叠的两部分全等.见解析【分析】根据题意AB=BD,AC=DF,∠A=∠D,AB=BD,AC=DF可得AF=DC,利用AAS即可判定△AOF≌△DOC【题目详解】解:不重叠的两部分全等.理由如下:∵三角形纸板ABC和DEF完全相同,∴AB=DB,BC=BF,∠A=∠D∴AF=CD在△AOF和△DOC中∴△AOF≌△DOC(AAS)∴不重叠的两部分全等22、见解析【分析】首先证明,然后有,再根据角平分线性质定理的逆定理即可证明.【题目详解】∵D是的中点,.,.在和中,,.,∴点D在的平分线上,∴AD平分.【题目点拨】本题主要考查角平分线性质定理的逆定理和全等三角形的判定及性质,掌握角平分线性质定理的逆定理和全等三角形的判定及性质是解题的关键.23、(1)A(6,0),B(0,3),C(2,2);(2)P(0,);(3)直线PC的解析式为【分析】(1)x=0代入,即可求出点A坐标,把y=0代入即可求出点B坐标,求方程组的解即可求出点C的坐标;(2)设P点坐标为(0,y),根据S△COP=S△COA列方程求解即可,(3)作点C关于y轴的对称点为M(﹣2,2),求出过点A,M的直线解析式,再求直线AM与y轴的交点坐标,即求出P的坐标,即可求出直线PC的解析式.【题目详解】(1)把x=0代入,∴y=3,∴B(0,3),把y=0代入,∴x=6,A(6,0),且,∴C点坐标为(2,2),(2)∵A(6,0),C(2,2)∴S△COA,=6×2÷2=6;∵P是y轴上一点,∴设P的坐标为(0,y),∴S△COP=,∵S△COP=S△COA,∴=6,∴y=±6,∴P(0,6)或(0,﹣6).(3)如图,过点C作y轴的对称点M,连接AM与y轴交于点P,则此时PA+PC最短,∵C的坐标为C(2,2),∴点C关于y轴的对称点为M(﹣2,2),∴过点A,M的直线解析式为,∵直线AM与y轴的交点为P(0,),∴当P点坐标为(0,)时,PA+PC最短,∴直线PC的解析式为.【题目点拨】本题考查了正比例函数,解题的关键是能熟练求直线与坐标轴交点坐标.24、(1)证明见解析;(2)证明见解析.【分析】(1)根据“HL”直接判定即可;(2)由全等三角形的性质可得AC=DB,∠ACB=∠DBC,再根据“等角对等边”得出MC=MB,即可得出结论.【题目详解】(1)∵∠A=∠D=90°,∴△ABC和△DCB都是直角三角形,在Rt△ABC和Rt△DCB中,,∴Rt△ABC≌Rt△DCB(HL),∴∠ABC=∠DCB;(2)∵Rt△ABC≌Rt△DCB,∴AC=DB,∠ACB=∠DBC,∴MC=MB,∴AM=DM.【题目点拨】本题考查了全等三角形的性质和判定、等腰三角形的判定,证明△ABC≌△DCB是解题的关键.25、(1);(2)6.5;(3)存在,或.理由见详解.【分析】(1)过点C作CD⊥y轴交于点D,从而易证△AOB≌△BDC,进行根据三角形全等的性质及点的坐标可求解;(2)根据勾股定理及题意可求AB的长,然后由(1)及三角形面积公式可求解;(3)由题意可得若使△PAB与△ABC全等,则有两种情况:①若∠ABP=90°,如图1,作CM⊥轴于点M,作PN⊥轴于点N;②若∠BAP=90°,如图2,此时,CA=B,CA∥B,线段B可由线段CA平移得到;进而可求解.【题目详解】解:(1)过点C作CD⊥y轴交于点D,如图所示:A,B,OA=2,OB=3,△ABC是等腰直角三角形,AB=BC,∠ABC=90°,∠ABO+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论