上海第二初级中学2024届数学八上期末调研模拟试题含解析_第1页
上海第二初级中学2024届数学八上期末调研模拟试题含解析_第2页
上海第二初级中学2024届数学八上期末调研模拟试题含解析_第3页
上海第二初级中学2024届数学八上期末调研模拟试题含解析_第4页
上海第二初级中学2024届数学八上期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海第二初级中学2024届数学八上期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在中,平分交于点,平分,,交于点,若,则()A.75 B.100 C.120 D.1252.如图,在中,,的垂直平分线交于点,交于点,若,则()A. B. C. D.3.视力表中的字母“”有各种不同的摆放方向,下列图中两个“”不成轴对称的是()A. B. C. D.4.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为()A.0.22×10﹣9 B.2.2×10﹣10 C.22×10﹣11 D.0.22×10﹣85.某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭本月与上月相比节水情况统计表:节水量()0.20.30.40.50.6家庭数(个)12241这10个家庭节水量的平均数和中位数分别是()A.0.42和0.4 B.0.4和0.4 C.0.42和0.45 D.0.4和0.456.如图,长和宽为a、b的长方形的周长为14,面积为10,则ab(a+b)的值为()A.140 B.70 C.35 D.247.在统计中,样本的标准差可以反映这组数据的()A.平均状态 B.分布规律 C.离散程度 D.数值大小8.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.用反证法证明“在△ABC中,如果∠B≠∠C,那么AB≠AC“时,应假设()A.AB=AC B.∠B=∠C C.AB≠AC D.∠B≠∠C10.计算22+(-1)°的结果是().A.5 B.4 C.3 D.2二、填空题(每小题3分,共24分)11.若,则的值为_________.12.如图,将长方形纸片ABCD沿对角线AC折叠,AD的对应线段AD′与边BC交于点E.已知BE=3,EC=5,则AB=___.13.已知点与点在同一条平行于轴的直线上,且点到轴的距离等于4,那么点的坐标是__________.14.如图,点为线段上一点,在同侧分别作正三角形和,分别与、交于点、,与交于点,以下结论:①≌;②;③;④.以上结论正确的有_________(把你认为正确的序号都填上).15.如图,在△ABC中,∠A=40°,点D为AB的延长线上一点,且∠CBD=120°,则∠C=_____.16.36的平方根是____,的算术平方根是___,的绝对值是___.17.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.18.如图,AB=DB,∠1=∠2,请你添加一个适当的条件,使△ABC≌△DBE,则需添加的条件是____(只要写一个条件).三、解答题(共66分)19.(10分)综合与探究如图,在平面直角坐标系中,,点.(1)在图①中,点坐标为__________;(1)如图②,点在线段上,连接,作等腰直角三角形,,连接.证明:;(3)在图②的条件下,若三点共线,求的长;(4)在轴上找一点,使面积为1.请直接写出所有满足条件的点的坐标.20.(6分)已知a,b,c为△ABC的三边长,且.(1)求a,b值;(2)若△ABC是等腰三角形,求△ABC的周长.21.(6分)如图,在平面直角坐标系中,已知A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点C1的坐标:;(3)△A1B1C1的面积是多少?22.(8分)已知点A(a+2b,1),B(7,a﹣2b).(1)如果点A、B关于x轴对称,求a、b的值;(2)如果点A、B关于y轴对称,求a、b的值.23.(8分)(1)如图1,已知,平分外角,平分外角.直接写出和的数量关系,不必证明;(2)如图2,已知,和三等分外角,和三等分外角.试确定和的数量关系,并证明你的猜想;(不写证明依据)(3)如图3,已知,、和四等分外角,、和四等分外角.试确定和的数量关系,并证明你的猜想;(不写证明依据)(4)如图4,已知,将外角进行分,是临近边的等分线,将外角进行等分,是临近边的等分线,请直接写出和的数量关系,不必证明.24.(8分)甲、乙两名队员参加设计训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均数(环)中位数(环)众数(环)方差甲乙(1)表格中,,;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩,若选派其中一名参赛,你认为应选哪名队员?(3)如果乙再射击次,命中环,那么乙的射击成绩的方差.(填“变大”“变小”或“不变”)25.(10分)亚洲未来最大火车站雄安站是京雄城际铁路的终点站,于2018年12月1日正式开工建设,预计2020年底投入使用.该车站建成后,可实现雄安新区与北京、天津半小时交通圈,与石家庄1小时交通圈,将进一步完善京津冀区域高速铁路网结构,便利沿线群众出行,对提高新区全国辐射能力,促进京津冀协同发展,均具有十分重要的意义.某工厂承包了雄安站建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.26.(10分)解方程组:

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.【题目详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故选:B【题目点拨】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.2、B【分析】由垂直平分线的性质可得AE=BE,进而可得∠EAB=∠ABE,根据三角形外角性质可求出∠A的度数,利用等腰三角形性质求出∠ABC的度数.【题目详解】∵DE是AC的垂直平分线,∴AE=BE,∴∠A=∠ABE,∵,∠BEC=∠EAB+∠ABE,∴∠A=76°÷2=38°,∵AB=AC,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【题目点拨】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.3、D【分析】根据两个图形成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,逐一分析即可.【题目详解】解:A选项中两个“”成轴对称,故本选项不符合题意;B选项中两个“”成轴对称,故本选项不符合题意;C选项中两个“”成轴对称,故本选项不符合题意;D选项中两个“”不成轴对称,故本选项符合题意;故选D.【题目点拨】此题考查的是两个图形成轴对称的识别,掌握两个图形成轴对称的定义是解决此题的关键.4、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.00000000022=,故选:B.【题目点拨】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.表示时关键要正确确定a的值以及n的值.5、C【分析】根据加权平均数的计算公式与中位数的定义即可求解.【题目详解】10个家庭节水量的平均数为=0.42;第5,6个家庭的节水量为0.4,0.5,∴中位数为0.45,故选C.【题目点拨】此题考查了加权平均数与中位数,掌握加权平均数的计算公式是解题的关键,是一道基础题.6、B【分析】直接利用长方形面积求法以及长方形周长求法得出ab,a+b的值,进而得出答案.【题目详解】解:∵长和宽为a、b的长方形的周长为14,面积为10,∴2(a+b)=14,ab=10,则a+b=7,故ab(a+b)=7×10=1.故选:B.【题目点拨】此题主要考查了单项式乘以多项式,正确得出a+b的值是解题关键.7、C【解题分析】根据标准差的概念判断.标准差是反映数据波动大小的量.【题目详解】方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.而标准差是方差的算术平方根,同样也反映了数据的波动情况.

故选C.【题目点拨】考查了方差和标准差的意义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.而标准差是方差的算术平方根,8、D【分析】将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.【题目详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,也是中心对称图形,故选:D.【题目点拨】此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.9、A【分析】第一步是假设结论不成立,反面成立,进行分析判断即可.【题目详解】解:反证法证明“在△ABC中,如果∠B≠∠C,那么AB≠AC“时,应假设AB=AC,故答案为A.【题目点拨】本题考查的是反证法,理解反证法的意义及步骤是解答本题关键.10、A【解题分析】分别计算平方、零指数幂,然后再进行实数的运算即可.【题目详解】解:原式=4+1=5故选:A.【题目点拨】此题考查了实数的运算,解答本题关键是掌握零指数幂的运算法则,难度一般.二、填空题(每小题3分,共24分)11、1【分析】根据同底数幂相乘,底数不变,指数相加即可列出方程,求出m的值.【题目详解】解:∵∴∴解得:m=1故答案为:1.【题目点拨】此题考查的是幂的运算性质,掌握同底数幂相乘,底数不变,指数相加是解决此题的关键.12、1【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=1,在直角三角形ABE中由勾股定理可求出AB.【题目详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB==1,故答案为:1.【题目点拨】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.13、或【分析】根据平行于轴的直线上的点纵坐标相等可求得点N的纵坐标的值,再根据点到轴的距离等于4求得点N的横坐标即可.【题目详解】解:∵点M(3,-2)与点N(x,y)在同一条平行于x轴的直线上,

∴y=-2,

∵点N到y轴的距离等于4,

∴x=-4或x=4,

∴点N的坐标是或.故答案为:或.【题目点拨】本题考查了坐标与图形,主要利用了平行于x轴的直线上点的坐标特征,需熟记.还需注意在直线上到定点等于定长的点有两个.14、①②④【分析】根据等边三角形的性质可得CA=CB,CD=CE,∠ACB=∠DCE=60°,然后根据等式的基本性质可得∠ACD=∠BCE,利用SAS即可证出≌,即可判断①;根据全等三角形的性质,即可判断②;利用三角形的内角和定理和等量代换即可求出∠AOB,即可判断③,最后利用ASA证出≌,即可判断④.【题目详解】解:∵△ABC和△CDE都是等边三角形∴CA=CB,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠BCD=∠DCE+∠BCD∴∠ACD=∠BCE在和中∴≌,故①正确;∴∠CAD=∠CBE,,故②正确;∵∠OPB=∠CPA∴∠AOB=180°-∠OPB-∠CBE=180°-∠CPA-∠CAD=∠ACB=60°,故③错误;∵∠BCQ=180°-∠ACB-∠DCE=60°∴∠ACP=∠BCQ在和中∴≌,∴,故④正确.故答案为:①②④.【题目点拨】此题考查的是全等三角形的判定及性质和等边三角形的性质,掌握全等三角形的判定及性质和等边三角形的性质是解决此题的关键.15、80°【分析】根据三角形的外角定理即可求解.【题目详解】由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故答案为80°【题目点拨】此题主要考查三角形的外角定理,解题的关键熟知三角形的外角性质.16、±62【分析】根据平方根、算术平方根、绝对值的定义求解即可.【题目详解】由题意,得36的平方根是±6;的算术平方根是2;的绝对值是;故答案为:±6;2;.【题目点拨】此题主要考查对平方根、算术平方根、绝对值的应用,熟练掌握,即可解题.17、八【解题分析】360°÷(180°-135°)=818、BC=BE(答案不唯一)【分析】由∠1=∠2利用角的和差可得∠DBE=∠ABC,现在已知一个角和角的一边,再加一个边,运用SAS可得三角形全等.【题目详解】解:∵∠1=∠2∴∠DBE=∠ABC,又∵AB=DB,∴添加BC=BE,运用SAS即可证明△ABC≌△DBE.故答案为:BC=BE(答案不唯一).【题目点拨】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知条件选择适当的判定方法是解答本题的关键.三、解答题(共66分)19、(1)(1,3);(1)答案见解析;(3)OD=1(4)F的坐标是或【分析】(1)过C点作轴,垂足为F,在证明了后可得到线段BM、CM的长,再求出线段OM的长,便可得点C的坐标;(1)根据和等式的基本性质证明,再利用“SAS”定理证明后便可得到;(3)三点共线时,可推导出轴,从而有;(4)根据点F在y轴上,所以中BF上的高总是OA=1,在此处只需要利用其面积为1和三角形的面积计算:,分点F在点B的上方和下方两种情况讨论可得.【题目详解】(1)过点C作轴,垂足为M,则∴∵∴∴又∵∴∴,∵点∴,∴而点C在第一象限,所以点(1)∵等腰直角三角形∴∵∴∴∴∴(3)由(1)可得∵三点共线且三角形是等腰直角三角形∴∴又∴四边形ODCM是矩形∴(4)∵点F在y轴上∴的边BF的高为OA=1∵即∴当点F在点B的上方时,其坐标为(3,0);当点F在点B的下方时,其坐标为(-1,0).故点F的坐标为(3,0)或(-1,0).【题目点拨】本题考查的是全等三角形的性质与判定,图形与坐标,掌握三角形全等的各种判定方法并能熟练的运用是关键.20、(1);(2)1.【分析】已知等式配方后,利用非负数的性质求出a与b的值,即可确定出三角形周长.【题目详解】解:(1)∵,

∴,

∴,

∴,,

∴,,

(2)∵是等腰三角形,∴底边长为3或6,由三角形三边关系可知,底边长为3,

∴的周长为,

即的周长为1.【题目点拨】此题考查了因式分解的应用,三角形三边关系的应用,熟练掌握完全平方公式是解本题的关键.21、(1)见解析;(2)(2,﹣1);(3)4.5【分析】(1)分别作出三个顶点关于y轴的对称点,再顺次连接即可得;(2)根据关于y轴的对称点的坐标特点即可得出;(3)利用长方形的面积减去三个顶点上三个直角三角形的面积即可.【题目详解】解:(1)如图,△A1B1C1即为所求;(2)由关于y轴的对称点的坐标特点可得,点C1的坐标为:(2,﹣1),故答案为:(2,﹣1);(3)△A1B1C1的面积为:.【题目点拨】本题考查了轴对称与坐标变化,熟知关于y轴对称的点的坐标特点是解答此题的关键.22、(1);(2).【分析】(1)根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.(2)根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【题目详解】解:(1)∵点A、B关于x轴对称,∴,解得:;(2))∵点A、B关于y轴对称,∴,解得:.【题目点拨】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.23、(1);(2);(3);(4).【分析】(1)由平分外角,平分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(2)由和三等分外角,和三等分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(3)由、和四等分外角,、和四等分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(4)由外角进行分,是临近边的等分线,将外角进行等分,是临近边的等分线,合三角形外角的性质与三角形内角和定理,即可得到结论;【题目详解】(1),理由如下:∵平分外角,平分外角,∴,,∵,,∴,∴;(2),理由如下:由已知得:,,∵,,∴,;(3),理由如下:由已知得:,,∵,,∴,,(4),理由如下:由已知得:,,∵,,∴,∴.【题目点拨】本题主要考查三角形外角的性质与三角形内角和定理,掌握三角形外角的性质与三角形内角和定理是解题的关键.24、(1)7;7.5;7(2)乙,理由见解析;(3)变小.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析;(3)根据方差公式即可求解判断.【题目详解】(1)甲的平均成绩a==7(环),甲的成绩的众数c=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、1、1、1、9、10,∴乙射击成绩的中位数b==7.5(环),故答案为7;7.5;7(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论