2024届河南省南阳市方城县数学八上期末质量检测模拟试题含解析_第1页
2024届河南省南阳市方城县数学八上期末质量检测模拟试题含解析_第2页
2024届河南省南阳市方城县数学八上期末质量检测模拟试题含解析_第3页
2024届河南省南阳市方城县数学八上期末质量检测模拟试题含解析_第4页
2024届河南省南阳市方城县数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省南阳市方城县数学八上期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣32.如图,一直线与两坐标轴的正半轴分别交于,两点,是线段上任意一点(不包括端点),过点分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A. B. C. D.3.如图是根据某校学生的血型绘制的扇形统计图,该校血型为型的有人,那么该校血型为型的人数为()A. B. C. D.4.下列运算正确的是()A. B.= C. D.5.以下列各组线段为边作三角形,不能构成直角三角形的是()A.3,5,6 B.3,4,5 C.5,12,13 D.9,40,416.下列各式不能分解因式的是()A. B. C. D.7.如图,正方形ABCD中,AB=1,则AC的长是()A.1 B. C. D.28.如图,两直线和在同一坐标系内图象的位置可能是()A. B.C. D.9.禽流感病毒的形状一般为球形,直径大约为,该直径用科学记数法表示为()A. B. C. D.10.已知则的值为:A.1.5 B. C. D.11.若分式有意义,则取值范围是()A. B. C. D.12.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的作法依据的是()A.SSS B.SAS C.AAS D.ASA二、填空题(每题4分,共24分)13.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是_____.14.如图,在△ABC和△DEF中,∠B=40°,∠E=140°,AB=EF=5,BC=DE=8,则两个三角形面积的大小关系为:S△ABC_____S△DEF.(填“>”或“=”或“<”).15.在△ABC中,AB=AC,与∠BAC相邻的外角为80°,则∠B=________.16.如图,依据尺规作图的痕迹,计算∠α=________°.17.如图所示,等边的顶点在轴的负半轴上,点的坐标为,则点坐标为_______;点是位于轴上点左边的一个动点,以为边在第三象限内作等边,若点.小明所在的数学兴趣合作学习小组借助于现代互联网信息技术,课余时间经过探究发现无论点在点左边轴负半轴任何位置,,之间都存在着一个固定的一次函数关系,请你写出这个关系式是_____.18.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于_______.三、解答题(共78分)19.(8分)如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)当秒时,求的长;(2)求出发时间为几秒时,是等腰三角形?(3)若沿方向运动,则当点在边上运动时,求能使成为等腰三角形的运动时间.20.(8分)在△ABC中,AB=AC,D、E分别在BC和AC上,AD与BE相交于点F.(1)如图1,若∠BAC=60°,BD=CE,求证:∠1=∠2;(2)如图2,在(1)的条件下,连接CF,若CF⊥BF,求证:BF=2AF;(3)如图3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC=2,求S△CDF的值.21.(8分)先化简,再求值:[(4x-y)(2x-y)+y(x-y)]÷2x,其中x=2,y=22.(10分)计算:(1)(2)(3)已知:,求.23.(10分)如图,、、的平分线交于.(1)是什么角?(直接写结果)(2)如图2,过点的直线交射线于点,交射线于点,观察线段,你有何发现?并说明理由.(3)如图2,过点的直线交射线于点,交射线于点,求证:;(4)如图3,过点的直线交射线的反向延长线于点,交射线于点,,,,求的面积.24.(10分)八年级(1)班从学校出发去某景点旅游,全班分成甲、乙两组,甲组乘坐大型客车,乙组乘坐小型客车.已知甲组比乙组先出发,汽车行驶的路程(单位:)和行驶时间(单位:)之间的函数关系如图所示.根据图象信息,回答下列问题:(1)学校到景点的路程为_,甲组比乙组先出发,组先到达旅游景点;(2)求乙组乘坐的小型客车的平均速度;(3)从图象中你还能获得哪些信息?(请写出一条)25.(12分)如图,在平面直角坐标系中,点、点,点同时满足下面两个条件:①点到、两点的距离相等;②点到的两边距离相等.(1)用直尺和圆规作出符合要求的点(不写作法,保留作图痕迹);(2)写出(1)中所作出的点的坐标.26.计算:(1)﹣(2)(-1)0﹣|1﹣

参考答案一、选择题(每题4分,共48分)1、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【题目详解】解:∵点P(a,3+a)在第二象限,∴,解得﹣3<a<1.故选:C.【题目点拨】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、A【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据围成的矩形的周长为8,可得到x、y之间的关系式.【题目详解】如图,过点分别作轴,轴,垂足分别为、,设点坐标为,点在第一象限,,,矩形的周长为8,,,即该直线的函数表达式是,故选.【题目点拨】本题主要考查矩形的性质及一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.根据坐标的意义得出x、y之间的关系是解题的关键.3、B【分析】根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB型血所对应的百分比即可求解.【题目详解】∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.【题目点拨】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.4、B【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【题目详解】A.x3•x4=x7,故本选项不合题意;B.(x3)4=x12,正确,故本选项符合题意;C.x6÷x2=x4,故本选项不合题意;D.(3b3)2=8b6,故本选项不合题意.故选:B.【题目点拨】此题考查同底数幂的乘除法运算法则,幂的乘方运算,正确掌握运算法则是解题关键.5、A【解题分析】根据勾股定理逆定理依次计算即可得到答案.【题目详解】A.,故不能构成直角三角形;B.,能构成直角三角形;C.,能构成直角三角形;D.,能构成直角三角形;故选:A.【题目点拨】此题考查勾股定理的逆定理,熟记定理并正确计算是解题的关键.6、C【解题分析】选项A.=2x(x-2).选项B.=(x+)2.选项C.,不能分.选项D.=(1-m)(1+m).故选C.7、B【分析】在直角三角形ABC中,利用勾股定理可直接求出AC的长;【题目详解】解:在Rt△ABC中,AB=BC=1,∴AC.故选:B.【题目点拨】本题考查了正方形的性质和勾股定理,属于基础题.正确的理解勾股定理是解决问题的关键.8、D【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.【题目详解】根据一次函数的系数与图象的关系依次分析选项可得:

A、由图可得,中,,,中,,,不符合;

B、由图可得,中,,,中,,,不符合;

C、由图可得,中,,,中,,,不符合;

D、由图可得,中,,,中,,,符合;

故选:D.【题目点拨】本题考查了一次函数的图象问题,解答本题注意理解:直线所在的位置与的符号有直接的关系.9、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为(,n为正整数).与较大数的科学记数法不同的是其所用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】故选:A【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、B【解题分析】试题解析:∵,∴a=b,∴.故选B.考点:比例的性质.11、B【分析】根据分式有意义的条件:分母≠0,列出不等式即可求出的取值范围.【题目详解】解:∵分式有意义,∴解得:故选B.【题目点拨】此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.12、A【分析】根据角平分线的作法步骤,连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【题目详解】解:如下图所示:连接CP、DP在△OCP与△ODP中,由作图可知:∴△OCP≌△ODP(SSS)故选:A.【题目点拨】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。二、填空题(每题4分,共24分)13、4.1【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【题目详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=AB•PC=BC•AF=×5CP=×6×4得:CP=4.1故答案为4.1.【题目点拨】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用.14、=【分析】分别表示出两个三角形的面积,根据面积得结论.【题目详解】接:过点D作DH⊥EF,交FE的延长线于点H,∵∠DEF=140°,∴∠DEH=40°.∴DH=sin∠DEH×DE=8×sin40°,∴S△DEF=EF×DH=20×sin40°过点A作AG⊥BC,垂足为G.∵AG=sin∠B×AB=5×sin40°,∴S△ABC=BC×AG=20×sin40°∴∴S△DEF=S△ABC故答案为:=【题目点拨】本题考查了锐角三角函数和三角形的面积求法.解决本题的关键是能够用正弦函数表示出三角形的高.15、40°【分析】根据等边对等角可得∠B=∠C,然后根据三角形外角的性质可得∠B+∠C=80°,从而求出∠B.【题目详解】∵AB=AC,∴∠B=∠C∵与∠BAC相邻的外角为80°,∴∠B+∠C=80°即2∠B=80°∴∠B=40°故答案为:40°.【题目点拨】此题考查的是等腰三角形的性质和三角形外角的性质,掌握等边对等角和三角形外角的性质是解决此题的关键.16、1.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【题目详解】如图,∵四边形ABCD是矩形,

∴AD∥BC,

∴∠DAC=∠ACB=68°.

∵由作法可知,AF是∠DAC的平分线,

∴∠EAF=∠DAC=34°.

∵由作法可知,EF是线段AC的垂直平分线,

∴∠AEF=90°,

∴∠AFE=90°-34°=1°,

∴∠α=1°.

故答案为:1.17、【分析】过点A作x轴的垂线,垂足为E,根据等边三角形的性质得到OE和AE,再根据三线合一得到OB即可;再连接BD,过点D作x轴的垂线,垂足为F,证明△OAC≌△BAD,得到∠CAD=∠CBD=60°,利用30°所对的直角边是斜边的一半以及点D的坐标得到BF和DF的关系,从而可得关于m和n的关系式.【题目详解】解:如图,过点A作x轴的垂线,垂足为E,∵△ABO为等边三角形,A,∴OE=1,AE=,∴BE=1,∴OB=2,即B(-2,0);连接BD,过点D作x轴的垂线,垂足为F,∵∠OAB=∠CAD,∴∠OAC=∠BAD,∵OA=AB,AC=AD,∴△OAC≌△BAD(SAS),∴∠OCA=∠ADB,∵∠AGD=∠BGC,∴∠CAD=∠CBD=60°,∴在△BFD中,∠BDF=30°,∵D(m,n),∴DF=-m,DF=-n,∵B(-2,0),∴BF=-m-2,∵DF=BF,∴-n=(-m-2),整理得:.故答案为:,.【题目点拨】本题考查了等边三角形的性质,含30°的直角三角形的性质,全等三角形的判定和性质,一次函数,解题的关键是添加辅助线构造全等三角形,有一定难度.18、1.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【题目详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得.故答案是:1.三、解答题(共78分)19、(1);(2);(3)5.5秒或6秒或6.6秒【分析】(1)根据点、的运动速度求出,再求出和,用勾股定理求得即可;(2)由题意得出,即,解方程即可;(3)当点在边上运动时,能使成为等腰三角形的运动时间有三种情况:①当时(图,则,可证明,则,则,从而求得;②当时(图,则,易求得;③当时(图,过点作于点,则求出,,即可得出.【题目详解】(1)解:(1),,,;(2)解:根据题意得:,即,解得:;即出发时间为秒时,是等腰三角形;(3)解:分三种情况:①当时,如图1所示:则,,,,,,,秒.②当时,如图2所示:则秒.③当时,如图3所示:过点作于点,则,,,秒.由上可知,当为5.5秒或6秒或6.6秒时,为等腰三角形.【题目点拨】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.20、(1)见解析;(2)见解析;(3)【分析】(1)根据等边三角形的判定定理得到△ABC为等边三角形,得到AB=BC,∠ABC=∠C=60°,证明△ABD≌△BCE,根据全等三角形的性质证明结论;(2)过B作BH⊥AD,根据全等三角形的性质得到∠BAD=∠CBE,证明△AHB≌△BFC,根据全等三角形的性质解答;(3)过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,根据角平分线的性质得到CM=CN,证明△AFB≌△CMA,根据全等三角形的性质得到BF=AM,AF=CM,根据三角形的面积公式列式计算即可.【题目详解】(1)证明:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=BC,∠ABC=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠1=∠2;(2)如图2,过B作BH⊥AD,垂足为H,∵△ABD≌△BCE,∴∠BAD=∠CBE,∵∠ABF+∠CBE=60°,∴∠BFD=∠ABF+∠BAD=60°,∴∠FBH=30°,∴BF=2FH,在△AHB和△BFC中,∴△AHB≌△BFC(AAS),∴BF=AH=AF+FH=2FH,∴AF=FH,∴BF=2AF;(3)如图3,过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,∵∠BFD=2∠CFD=90°,∴∠EFC=∠DFC=45°,∴CF是∠MFN的角平分线,∴CM=CN,∵∠BAC=∠BFD=90°,∴∠ABF=∠CAD,在△AFB和△CMA中,∴△AFB≌△CMA(AAS)∴BF=AM,AF=CM,∴AF=CN,∵∠FMC=90°,∠CFM=45°,∴△FMC为等腰直角三角形,∴FM=CM,∴BF=AM=AF+FM=2CM,∵∴S△BDF=2S△CDF,∵AF=CM,FM=CM,∴AF=FM,∴F是AM的中点,∴,∵AF⊥BF,CN⊥BF,AF=CN,∴S△AFB=S△BFC,设S△CDF=x,则S△BDF=2x,∴S△AFB=S△BFC=3x∴,则3x+3x+x=2,解得,x=,即S△CDF=.【题目点拨】本题考查了全等三角形的判定和性质、三角形的面积计算,掌握全等三角形的判定定理和性质定理是解题的关键.21、4x-,【分析】原式中括号内先根据整式的乘法运算法则计算,合并同类项后再根据多项式除以单项式的法则计算,然后把x、y的值代入化简后的式子计算即可.【题目详解】解:原式=[8x2-6xy+y2+xy-y2]÷2x=[8x2-5xy]÷2x=4x-;当x=2,y=时,原式=4×2-=.【题目点拨】本题考查了整式的混合运算以及代数式求值,属于常考题型,熟练掌握整式的混合运算法则是解题关键.22、(1);(2);(3)72【分析】(1)原式根据绝对值、算术平方根、负整数指数幂以及0指数幂进行计算,再算加减即可求解;(2)先根据积的乘方和幂的乘方进行计算,再求出答案即可;(3)先根据幂的乘方和已知条件求出,根据同底数幂的乘法得出=,再求出答案即可.【题目详解】(1)原式=4-3+-1=;(2)原式===;(3),,==【题目点拨】本题考查了绝对值,负整数指数幂,零指数幂,算术平方根,实数的混合运算,幂的乘方和积的乘方,科学记数法,同底数幂的乘法等知识点,能灵活运用知识点进行计算是解此题的关键,注意:(am)n=amn,=am+n.23、(1)直角;(2)DE=CE,理由见解析;(3)理由见解析;(4)1.【分析】(1)根据两直线平行同旁内角互补可得∠BAM+∠ABN=110°,然后由角平分线的定义可证∠BAE+∠ABE=90°,进而可得∠AEB=90°;(2)过点E作EF⊥AM,交AM与F,交BN于H,作EG⊥AB于G.由角平分线的性质可证EF=EH,然后根据“AAS”证明△CEF≌△DEH即可;(3)在AB上截取AF=AC,连接EF,可证△ACE≌△AFE,得到∠AEC=∠AEF,进而证出∠FEB=∠DEB,然后再证明△BFE≌△BDE,可得结论;(4)延长AE交BD于F,由三线合一可知AB=BF=5,AE=EF,根据“AAS”证明△ACE≌△FDE,可得DF=AC=3,设S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,根据S△ABE﹣S△ACE=2,求出x的值,进而可求出△BDE的面积.【题目详解】解:(1)∵AM//BN,∴∠BAM+∠ABN=110°,∵AE平分∠BAM,BE平分∠ABN,∴∠BAE=BAM,∠ABE=∠ABN,∴∠BAE+∠ABE=(∠BAM+∠ABN)=90°,∴∠AEB=90°;(2)如图,过点E作EF⊥AM,交AM与F,交BN于H,作EG⊥AB于G.∵AE平分∠BAM,BE平分∠ABN,∴EF=EG=EH.∵AM//BN,∴∠CFE=∠EHD.在△CEF和△DEH中,∵∠CFE=∠DHE=90°,∠CFE=∠EHD,EF=EH,∴△CEF≌△DEH,∴DE=CE;(3)在AB上截取AF=AC,连接EF,在△ACE与△AFE中,,∴△ACE≌△AFE,∴∠AEC=∠AEF,∵∠AEB=90°,∴∠AEF+∠BEF=∠AEC+∠BED=90°,∴∠FEB=∠DEB,在△BFE与△BDE中,,∴△BFE≌△BDE,∴BF=BD,∵AB=AF+BF,∴AC+BD=AB;(4)延长AE交BD于F,∵∠AEB=90°,∴BE⊥AF,∵BE平分∠ABN,∴AB=BF=5,AE=EF,∵AM//BN,∴∠C=∠EDF,在△ACE与△FDE中,,∴△ACE≌△FDE,∴DF=AC=3,∵BF=5,∴设S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,∵S△ABE﹣S△ACE=2,∴5x﹣3x=2,∴x=1,∴△BDE的面积=1.【题目点拨】本题考查了平行线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论