重庆市十八中学2024届八上数学期末调研试题含解析_第1页
重庆市十八中学2024届八上数学期末调研试题含解析_第2页
重庆市十八中学2024届八上数学期末调研试题含解析_第3页
重庆市十八中学2024届八上数学期末调研试题含解析_第4页
重庆市十八中学2024届八上数学期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市十八中学2024届八上数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.等腰三角形有一个外角是110°,则其顶角度数是()A.70° B.70°或40° C.40° D.110°或40°2.一辆客车从霍山开往合肥,设客车出发th后与合肥的距离为skm,则下列图象中能大致反映s与t之间函数关系的是()A. B. C. D.3.关于的一元二次方程的根的情况()A.有两个实数根 B.有两个不相等的实数根C.没有实数根 D.由的取值确定4.中、、的对边分别是、、,下列命题为真命题的()A.如果,则是直角三角形B.如果,则是直角三角形C.如果,则是直角三角形D.如果,则是直角三角形5.x,y满足方程,则的值为()A. B.0 C. D.6.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.7.下列运算正确的是()A.x3+x3=2x6 B.x2·x4=x8C.(x2)3=x6 D.2x-2=8.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35° B.40° C.45° D.55°9.分式中的x、y同时扩大2倍,则分式值()A.不变 B.是原来的2倍 C.是原来的4倍 D.是原来的10.等腰三角形的两边长分别为3cm,6cm,则该三角形的周长为()A.12cm B.15cm C.12cm或15cm D.以上都不对11.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A. B. C. D.12.若,则的值为()A.3 B.6 C.9 D.12二、填空题(每题4分,共24分)13.在Rt△ABC中,∠C是直角,∠A=70°,则∠B=___________.14.已知,,则代数式的值是______________.15.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为___16.在等腰三角形中,有一个角等于40°,则这个等腰三角形的顶角的外角的度数为___17.如图,,于,于,且,则________.18.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为__________.三、解答题(共78分)19.(8分)在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于轴对称的;并写出的坐标;(2)是直角三角形吗?说明理由.20.(8分)(1)计算:.(2)已知,求的值.(3)化简:.21.(8分)如图,已知∠A=∠D,AB=DB,点E在AC边上,∠AED=∠CBE,AB和DE相交于点F.(1)求证:△ABC≌△DBE.(2)若∠CBE=50°,求∠BED的度数.22.(10分)已知,,,试解答下列问题:(1)如图①,则__________,则与的位置关系为__________(2)如图②,若点E、F在线段上,且始终保持,.则的度数等于__________;(3)在第(2)题的条件下,若平行移动到图③所示①在移动的过程中,与的数量关系是否发生改变,若不改变,求出它们之间的数量关系;若改变,请说明理由.②当时,求的度数.23.(10分)列方程解应用题:初二(1)班组织同学乘大巴车前往爱国教育基地开展活动,基地离学校有60公里,队伍12:00从学校出发,张老师因有事情,12:15从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地,问:(1)大巴与小车的平均速度各是多少?(2)张老师追上大巴的地点到基地的路程有多远?24.(10分)如图,在△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)(2)求S△ADC:S△ADB的值.25.(12分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.26.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E、F为垂足,且BE=CF.求证:△ABC是等腰三角形.

参考答案一、选择题(每题4分,共48分)1、B【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【题目详解】解:①当110°角为顶角的外角时,顶角为180°﹣110°=70°;②当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°.故选B.【题目点拨】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.2、B【解题分析】分析:因为匀速行驶,图象为线段,时间和路程是正数,客车从霍山出发开往合肥,客车与合肥的距离越来越近,路程由大变小,由此选择合理的答案.详解:客车是匀速行驶的,图象为线段,s表示客车从霍山出发后与合肥的距离,s会逐渐减小为0;A、C、D都不符.故选B.点睛:本题主要考查了函数图象,解题时应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.3、B【分析】计算出方程的判别式为△=a2+8,可知其大于0,可判断出方程根的情况.【题目详解】方程的判别式为,所以该方程有两个不相等的实数根,故选:B.【题目点拨】本题主要考查一元二次方程根的判别式,掌握根的判别式与方程根的情况是解题的关键.4、D【分析】根据三角形内角和可判断A和B,根据勾股定理逆定理可判断C和D.【题目详解】解:A、∵∠A=2∠B=3∠C,∴,,∵∠A+∠B+∠C=180°,∴,∴∠A≈98°,故不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C==75°,故不符合题意;C、如果a:b:c=1:2:2,∵12+22≠22,∴不是直角三角形,故不符合题意;D、如果a:b;c=3:4:,∵,∴△ABC是直角三角形,符合题意;故选:D.【题目点拨】本题主要考查命题与定理,三角形的内角和以及勾股定理的逆定理,解题的关键是熟练掌握勾股定理的逆定理和直角三角形的判定.5、A【分析】利用整体法将两式相加,即可求得.【题目详解】解:,①+②得:,,故选A.【题目点拨】本题考查代数式的求值,灵活运用加减消元的思想是关键.6、B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【题目详解】解:由题意,得

y=30-5t,

∵y≥0,t≥0,

∴30-5t≥0,

∴t≤6,

∴0≤t≤6,

∴y=30-5t是降函数且图象是一条线段.

故选B.【题目点拨】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.7、C【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方运算法则和负整数指数幂的运算法则计算各项即得答案.【题目详解】解:A、x3+x3=2x3≠2x6,所以本选项运算错误;B、,所以本选项运算错误;C、(x2)3=x6,所以本选项运算正确;D、2x-2=,所以本选项运算错误.故选:C.【题目点拨】本题考查的是合并同类项、同底数幂的乘法、幂的乘方和负整数指数幂等运算法则,属于基础题型,熟练掌握基本知识是解题关键.8、C【解题分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【题目详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【题目点拨】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.9、B【解题分析】试题解析:∵分式中的x,y同时扩大2倍,

∴分子扩大4倍,分母扩大2倍,

∴分式的值是原来的2倍.

故选B.10、B【分析】分两种情况:底边为3cm,底边为6cm时,结合三角形三边的关系,根据三角形的周长公式,可得答案.【题目详解】底边为3cm,腰长为6cm,这个三角形的周长是3+6+6=15cm,底边为6cm,腰长为3cm,3+3=6,不能以6cm为底构成三角形;故答案为:B.【题目点拨】本题考查了等腰三角形的性质,利用了等腰三角形的性质,三角形三边的关系,分类讨论是解题关键.11、C【解题分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解:根据题意,得.故选C.12、C【解题分析】∵a+b=3,∴a2-b2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3a-3b+6b=3a+3b=3(a+b)=9,故选C.二、填空题(每题4分,共24分)13、20°【分析】根据直角三角形,两个锐角互余,即可得到答案.【题目详解】∵在Rt△ABC中,∠C是直角,∠A=70°,∴∠B=90°-∠A=90°-70°=20°,故答案是:20°【题目点拨】本题主要考查直角三角形的性质,掌握直角三角形,锐角互余,是解题的关键.14、15【分析】根据整式的乘法将原式展开,代入和的值即可得解.【题目详解】,将,代入得原式,故答案为:15.【题目点拨】本题主要考查了整式的乘法,熟练运用多项式乘以多项式的计算公式是解决本题的关键.15、【分析】首先将点A的横坐标代入求得其纵坐标,然后即可确定方程组的解.【题目详解】解:直线与直线交于点,当时,,点A的坐标为,关于x、y的方程组的解是,故答案为.【题目点拨】本题考查一次函数与二元一次方程(组)的结合.16、140°或80°【分析】分别讨论40°为顶角和底角的情况,求出即可.【题目详解】①当40°为顶角时,则这个等腰三角形的顶角的外角的度数为180-40=140°,②当40°为底角时,顶角为=100°,则这个等腰三角形的顶角的外角的度数为180-100=80°,故答案为140°或80°.【题目点拨】本题是对等腰三角形角度转换的考查,分类讨论是解决本题的关键.17、【分析】根据角平分线性质求出OC平分∠AOB,即可求出答案.【题目详解】∵CD⊥OA于D,CE⊥OB,CD=CE,∴OC平分∠AOB,∵∠AOB=50°,∴∠DOC=∠AOB=25°,故答案为:25°.【题目点拨】本题考查了角平分线的判定,注意:在角的内部到角的两边距离相等的点在角的平分线上.18、2+2【解题分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【题目详解】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故答案为2+2.【题目点拨】本题考查了线段垂直平分线性质、三角形内角和定理、等腰三角形的性质、含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.三、解答题(共78分)19、(1)图见解析,C1(5,2)(2)是直角三角形,理由见解析【分析】(1)直接根据轴对称的性质画出,并写出的坐标;(2)根据勾股定理即可求解.【题目详解】(1)如图所示,为所求,C1(5,2);(2)AB=,AC=,BC=,∵AB2=AC2+BC2∴是直角三角形.【题目点拨】本题考查的是作图−轴对称变换,熟知关于y轴对称的点的坐标特点及勾股定理是解答此题的关键.20、(1)-1-y2;(2);(3)2+1.【分析】(1)根据整式的乘法法则运算即可;(2)先将得到,再由完全平方差得出的值即可;(3)根据分式的加法和除法法则运算即可.【题目详解】(1)解:原式=x2-2-(x2+2+y2)=x2-2-x2-2-y2=(2)解:∵,∴,∴,∴∵=,∴=(3)解:原式=[+]×(+2)(-2)=(-2)2+1=2-1+1+1=2+1【题目点拨】本题考查了整式的乘法、完全平方公式、分式的混合运算,解题的关键是熟悉上述知识点的运算法则.21、(1)见解析;(2)∠BEC=65°【分析】(1)根据三角形的内角和得到∠ABD=∠AED,求得∠ABC=∠DBE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到BE=BC,求得∠BEC=∠C,根据三角形的内角和即可得到结论.【题目详解】(1)证明:∵∠A=∠D,∠AFE=∠BFD,∴∠ABD=∠AED,又∵∠AED=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠ABC=∠DBE,在△ABC和△DBE中,,∴△ABC≌△DBE(ASA);(2)解:∵△ABC≌△DBE,∴BE=BC,∴∠BEC=∠C,∵∠CBE=50°,∴∠BEC=∠C=65°.【题目点拨】本题考查了全等三角形的判定和性质,灵活的根据题中已知条件选择合适的判定方法是解题的关键.22、(1)71°,平行;(1)36°;(3)①∠OCB=∠OFB;②∠OCA=54°.【分析】(1)根据平行线的性质得出∠B+∠O=180°,求出∠O=71°,求出∠O+∠A=180°,根据平行线的判定得出即可;(1)根据角平分线定义求出,即可得出答案;(3)①不变,求出∠OFB=1∠OCB,即可得出答案;

②设∠BOE=∠EOF=α,∠FOC=∠COA=β,求出∠OCA=∠BOC=1α+β,α=β=18°,即可得出答案.【题目详解】解:(1)∵BC∥OA,

∴∠B+∠O=180°,

∵∠B=108°,

∴∠O=71°,

∵∠A=108°,

∴∠O+∠A=180°,

∴OB∥AC,

故答案为:71°,平行;(1)∵∠FOC=∠AOC,,∠BOA=71°,∴,故答案为:36°;(3)①不变,

∵BC∥OA,

∴∠OCB=∠AOC,

又∵∠FOC=∠AOC,

∴∠FOC=∠OCB,

又∵BC∥OA,

∴∠OFB=∠FOA=1∠FOC,

∴∠OFB=1∠OCB,

即∠OCB:∠OFB=1:1.

即∠OCB=∠OFB;②由(1)知:OB∥AC,

∴∠OCA=∠BOC,

由(1)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,

∴∠OCA=∠BOC=1α+β

由(1)知:BC∥OA,

∴∠OEB=∠EOA=α+β+β=α+1β

∵∠OEB=∠OCA

∴1α+β=α+1β

∴α=β

∵∠AOB=71°,

∴α=β=18°

∴∠OCA=1α+β=36°+18°=54°.【题目点拨】本题考查了平行线的性质,与角平分线有关的证明.能灵活运用平行线的性质和判定进行推理是解此题的关键.23、(1)大巴的平均速度是40公里/小时,小车的平均速度是1公里/小时;(2)张老师追上大巴的地点到基地的路程有30公里.【分析】(1)根据“大巴车行驶全程所需时间=小车行驶全程所需时间+小车晚出发的时间+小车早到的时间”列分式方程求解可得;

(2)根据“从学校到相遇点小车行驶所用时间+小车晚出发时间=大巴车从学校到相遇点所用时间”列方程求解可得.【题目详解】(1)设大巴的平均速度是x公里/小时,则小车的平均速度是1.5x公里/小时,根据题意得:,解得:x=40,经检验:x=40是原方程的解,1.5x=1.5×40=1.答:大巴的平均速度是40公里/小时,小车的平均速度是1公里/小时;(2)设张老师追上大巴的地点到基地的路程有y公里,根据题意得:,解得:y=30,答:张老师追上大巴的地点到基地的路程有30公里.【题目点拨】本题主要考查了分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.24、(1)见解析;(2).【分析】(1)以A为圆心,以任意长度为半径作弧,分别交AC、AB于P、Q,分别以P、Q为圆心,以大于PQ长度为半径作弧,交于点M,连接AM并延长,交BC于D,从而作出AD;(2)过点D作DE⊥AB于E,根据勾股定理求出AB,然后根据角平分线的性质可得:DE=DC,最后根据三角形的面积公式求S△ADC:S△ADB的比值即可.【题目详解】解:(1)以A为圆心,以任意长度为半径作弧,分别交AC、AB于P、Q,分别以P、Q为圆心,以大于PQ长度为半径作弧,交于点M,连接AM并延长,交BC于D,如图所示:AD即为所求;(2)过点D作DE⊥AB于E∵AC=6,BC=8根据勾股定理可得:AB=∵AD平分∠CAB,DC⊥AC∴DE=DC∴S△ADC:S△ADB=(AC·DC):(A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论