浙江省嘉兴市海宁市第一2024届数学八上期末学业水平测试试题含解析_第1页
浙江省嘉兴市海宁市第一2024届数学八上期末学业水平测试试题含解析_第2页
浙江省嘉兴市海宁市第一2024届数学八上期末学业水平测试试题含解析_第3页
浙江省嘉兴市海宁市第一2024届数学八上期末学业水平测试试题含解析_第4页
浙江省嘉兴市海宁市第一2024届数学八上期末学业水平测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省嘉兴市海宁市第一2024届数学八上期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一辆客车从甲地开住乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y(千米)与行驶时间式(小时)之间的函数图象如图所示,则下列说法中错误的是()A.客车比出租车晚4小时到达目的地 B.客车速度为60千米时,出租车速度为100千米/时C.两车出发后3.75小时相遇 D.两车相遇时客车距乙地还有225千米2.如图,AB=AC,∠A=36°,AB的垂直平分线MN交AB于点M,交AC于点D,下列结论:①△BCD是等腰三角形;②BD是∠ABC的平分线;③DC+BC=AB;④△AMD≌△BCD,正确的是()A.①② B.②③ C.①②③ D.①②④3.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A. B.C. D.4.在平面直角坐标系中,有A(2,﹣1),B(0,2),C(2,0),D(﹣2,1)四点,其中关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A5.下列运算中错误的是()A. B. C. D.6.一辆货车从甲地匀速驶往乙地用了2.7h,到达后用了0.5h卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y(km)关于时间x(h)的函数图象如图所示,则a等于()A.4.7 B.5.0 C.5.4 D.5.87.点M关于y轴对称的点N的坐标是()A. B. C. D.8.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90° C.BD=AC D.∠B=45°9.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.以上都不对10.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()册数

0

1

2

3

4

人数

3

13

16

17

1

A.3,3 B.3,2 C.2,3 D.2,211.如图,已知,添加一个条件,使得,下列条件添加错误的是()A. B. C. D.12.如图,在中,,,,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在ABC中,ACB90,BAC30,AB2,D是AB边上的一个动点(点D不与点A、B重合),连接CD,过点D作CD的垂线交射线CA于点E.当ADE为等腰三角形时,AD的长度为__________.14.等腰三角形的一个外角是,则它底角的度数是______.15.分析下面式子的特征,找规律,三个括号内所填数的和是____________.,,7+(),15+(),(),…16.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=_____度.17.如图,在△ABC中,∠ACB=90°,AC=15,BC=9,点P是线段AC上的一个动点,连接BP,将线段BP绕点P逆时针旋转90°得到线段PD,连接AD,则线段AD的最小值是______.18.如图,在中,,分别垂直平分边和,交于点,.若,则______.三、解答题(共78分)19.(8分)已知,如图,折叠长方形(四个角都是直角,对边相等)的一边使点落在边的点处,已知,,求的长.20.(8分)在综合与实践课上,同学们以“一个含的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线且和直角三角形,,,.操作发现:(1)在如图1中,,求的度数;(2)如图2,创新小组的同学把直线向上平移,并把的位置改变,发现,说明理由;实践探究:(3)缜密小组在创新小组发现结论的基础上,将如图中的图形继续变化得到如图,平分,此时发现与又存在新的数量关系,请直接写出与的数量关系.21.(8分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图(1)中,画一个三角形,使它的三边长都是有理数;(2)在图(2)中,画一个直角三角形,使它们的三边长都是无理数;(3)在图(3)中,画一个正方形,使它的面积是10.22.(10分)如图,在等边中,点,分别是,上的动点,且,交于点.(1)如图1,求证;(2)点是边的中点,连接,.①如图2,若点,,三点共线,则与的数量关系是;②若点,,三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.23.(10分)已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)24.(10分)计算:(1)(2).25.(12分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0(1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k的取值范围.26.有两棵树,一棵高9米,另一棵高4米,两树相距12米.一只小鸟从一棵树的树梢(最高点)飞到另一棵树的树梢(最高点),问小鸟至少飞行多少米?

参考答案一、选择题(每题4分,共48分)1、D【分析】观察图形可发现客车出租车行驶路程均为600千米,客车行驶了10小时,出租车行驶了6小时,即可求得客车和出租车行驶时间和速度;

易求得直线AC和直线OD的解析式,即可求得交点横坐标x,即可求得相遇时间,和客车行驶距离,即可解题.【题目详解】解:(1)∵客车行驶了10小时,出租车行驶了6小时,∴客车比出租车晚4小时到达目的地,故A正确;

(2)∵客车行驶了10小时,出租车行驶了6小时,∴客车速度为60千米/时,出租车速度为100千米/时,故B正确;

(3)∵设出租车行驶时间为x,距离目的地距离为y,

则y=−100x+600,

设客车行驶时间为x,距离目的地距离为y,

则y=60x;

当两车相遇时即60x=−100x+600时,x=3.75h,故C正确;

∵3.75小时客车行驶了60×3.75=225千米,

∴距离乙地600−225=375千米,故D错误;

故选:D.【题目点拨】本题主要考查了一次函数解析式的实际应用,正确求得一次函数解析式是解题的关键.2、C【分析】由等腰三角形的性质和垂直平分线的性质,结合三角形的内角和定理,以及全等三角形的判定,分别进行判断,即可得到答案.【题目详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=,∵MN垂直平分AB,∴AD=BD,AM=BM,∴∠ABD=∠A=36°,∴∠DBC=36°,∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形,①正确;∵∠ABD=∠DBC=36°,∴BD平分∠ABC,②正确;∵BC=BD=AD,AB=AC,∴DC+BC=DC+AD=AC=AB;③正确;△AMD与△BCD不能证明全等,④错误;故正确的结论有:①②③;故选:C.【题目点拨】本题考查了等腰三角形的性质,垂直平分线的性质,三角形的内角和定理,全等三角形的判定,解题的关键是熟练掌握所学的性质进行解题.3、D【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【题目详解】设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选D.【题目点拨】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.4、D【分析】直接利用关于原点对称点的特点:纵横坐标均互为相反数得出答案.【题目详解】∵A(2,﹣1),D(﹣2,1)横纵坐标均互为相反数,∴关于原点对称的两点为点D和点A.故选:D.【题目点拨】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.5、A【分析】根据合并同类二次根式的法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【题目详解】A.与不是同类二次根式,不能合并,故此项错误,符合要求;B.,故此项正确,不符合要求;C.,故此项正确,不符合要求;D.,故此项正确,不符合要求;故选A.【题目点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.6、B【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【题目详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【题目点拨】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.7、A【分析】根据关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等即可得出结论.【题目详解】解:点M关于y轴对称的点N的坐标是故选A.【题目点拨】此题考查的是求一个点关于y轴对称点的坐标,掌握关于y轴对称的两点坐标关系是解决此题的关键.8、A【解题分析】试题分析:根据AB=AC,AD=AD,∠ADB=∠ADC=90°可得Rt△ABD和Rt△ACD全等.考点:三角形全等的判定9、B【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,根据全等三角形对应边相等可得AC=AE,求出△DEB的周长=AB.【题目详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴可得△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长为6cm.故选:B.【题目点拨】角平分线上的点到角的两边的距离相等与根据HL证明全等,等量代换理清逻辑。10、B【解题分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是1,故这组数据的众数为1.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).∴中位数是按第25、26名学生读数册数的平均数,为:2.故选B.11、B【分析】根据三角形全等的判定定理添加条件即可.【题目详解】若添加,则可根据“AAS”判定两三角形全等;若添加,则有两组对应边相等,但相等的角不是夹角,不能判定两三角形全等;若添加,则可根据“SAS”判定两三角形全等;若添加,则可根据“ASA”判定两三角形全等;故选:B【题目点拨】本题考查的是判定两个三角形全等的条件,需要注意的是,当两边对应相等,但相等的角不是夹角时,是不能判定两个三角形全等的.12、B【分析】由题中条件可得,即,可由与、的差表示,进而求解即可.【题目详解】∵,∴,在和中∴(SAS),∴,,∵.∴,∴.故选B.【题目点拨】考查了全等三角形的判定及性质,解题关键是熟记其判定和性质,并灵活运用解题问题.二、填空题(每题4分,共24分)13、1或【分析】分两种情况:①当点E在AC上,AE=DE时,则∠EDA=∠BAC=30°,由含30°角的直角三角形的性质得出BC=1,∠B=60°,证出△BCD是等边三角形,得出AD=AB-BD=1;②当点E在射线CA上,AE=AD时,得出∠E=∠ADE=15°,由三角形内角和定理求出∠ACD=∠CDA,由等角对等边得出AD=AC=即可.【题目详解】解:分两种情况:①当点E在AC上,AE=DE时,∴∠EDA=∠BAC=30°,∵DE⊥CD,∴∠BDC=60°,∵∠ACB=90°,∠BAC=30°,∴BC=AB=1,∠B=60°,∴△BCD是等边三角形,∴BD=BC=1,∴AD=AB-BD=1;②当点E在射线CA上,AE=AD时,如图所示:∵∠BAC=30°,∴∠E=∠ADE=15°,∵DE⊥CD,∴∠CDA=90°−15°=75°,∴∠ACD=180°−30°−75°=75°=∠CDA,∴AD=AC=,综上所述:AD的长度为1或;故答案为:1或.【题目点拨】本题考查了勾股定理、等腰三角形的判定与性质、含30度角的直角三角形的性质、等边三角形的判定与性质等知识;灵活运用各性质进行推理计算是解决问题的关键.14、42.5°【分析】根据等腰三角形的一个外角是可以得到一个内角是,三角形内角和,而只有可能是顶角,据此可以计算底角.【题目详解】解:等腰三角形的一个外角是.等腰三角形的一个内角是.如果是底角,那么,三角形内角和超过.只有可能是顶角.它底角为:.故答案:.【题目点拨】本题主要考查等腰三角形的性质,灵活运用三角形内角和是解题的关键.15、11.1【分析】分别找到这列算式中的整数部分的规律与分式部分的规律即可求解.【题目详解】这列算式中的整数部分:1,1,7,15…1×2+1=1;1×2+1=7;7×2+1=15;后一个整数是前一个整数的2倍加上1;∴括号内的整数为15×2+1=11,÷2=;÷2=验证:÷2=;要填的三个数分别是:,,11,它们的和是:++11=11=11.1.故答案为:11.1.【题目点拨】本题分出整数部分和分数部分,各自找出规律,再根据规律进行求解.16、1.【分析】根据等边三角形的性质得出∠ACB=60°,然后根据等腰三角形的性质以及三角形外角的性质即可求得∠E.【题目详解】解:∵△ABC是等边三角形,∴∠ACB=60°,∵CE=CD,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠E==1°,故答案为1.【题目点拨】本题考查等边三角形的性质,关键在于牢记基础知识,通过题目找到关键性质.17、3【分析】如图,过点D作DE⊥AC于E,有旋转的性质可得DP=BP,∠DPB=90°,由“AAS”可证△DEP≌△PCB,可得DE=CP,EP=BC=9,可求AE+DE=6,由勾股定理和二次函数的性质可求解.【题目详解】如图,过点D作DE⊥AC于E,∵将线段BP绕点P逆时针旋转90°得到线段PD,∴DP=BP,∠DPB=90°,∴∠DPE+∠BPC=90°,且∠BPC+∠PBC=90°,∴∠DPE=∠PBC,且DP=BP,∠DEP=∠C=90°,∴△DEP≌△PCB(AAS)∴DE=CP,EP=BC=9,∵AE+PC=AC-EP=6∴AE+DE=6,∵AD2=AE2+DE2,∴AD2=AE2+(6-AE)2,∴AD2=2(AE-3)2+18,当AE=3时,AD有最小值为3,故答案为3.【题目点拨】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,利用二次函数的性质求最小值是本题的关键.18、1【分析】依据DM、EN分别垂直平分AB和AC,即可得到AD=BD,AE=EC,进而得出∠B=∠BAD,∠C=∠EAC,依据∠BAC=110°,即可得到∠DAE的度数.【题目详解】解:∵∠BAC=110°,

∴∠B+∠C=180°-110°=70°,

∵DM是线段AB的垂直平分线,

∴DA=DB,

∴∠DAB=∠B,

同理,EA=EC,

∴∠EAC=∠C,

∴∠DAE=∠BAC-∠DAB-∠EAC=∠BAC-(∠B+∠C)=1°,

故答案为:1.【题目点拨】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、解答题(共78分)19、【分析】设,在△CEF中用勾股定理求得EC的长度.【题目详解】∴由勾股定理得,.设,则.∴由勾股定理得∴解得∴EC的长为1.【题目点拨】本题考查了勾股定理的应用,用代数式表示△CEF中各边的等量关系式,求出EC的长.20、操作发现:(1);(2)见解析;实践探究:(3).【解题分析】(1)如图1,根据平角定义先求出∠3的度数,再根据两直线平行,同位角相等即可得;(2)如图2,过点B作BD//a,则有∠2+∠ABD=180°,根据已知条件可得∠ABD=60°-∠1,继而可得∠2+60°-∠1=180°,即可求得结论;(3)∠1=∠2,如图3,过点C作CD//a,由已知可得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,根据平行线的性质可得∠BCD=∠2,继而可求得∠1=∠BAM=60°,再根据∠BCD=∠BCA-∠DCA求得∠BCD=60°,即可求得∠1=∠2.【题目详解】(1)如图1,∵∠BCA=90°,∠1=46°,∴∠3=180°-∠BCA-∠1=44°,∵a//b,∴∠2=∠3=44°;(2)理由如下:如图2,过点B作BD//a,∴∠2+∠ABD=180°,∵a//b,∴b//BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:如图3,过点C作CD//a,∵AC平分∠BAM,∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=2×30°=60°,∵CD//a,∴∠BCD=∠2,∵a//b,∴∠1=∠BAM=60°,b//CD,∴∠DCA=∠CAM=30°,∵∠BCD=∠BCA-∠DCA,∴∠BCD=90°-30°=60°,∴∠2=60°,∴∠1=∠2.【题目点拨】本题考查了平行线的判定与性质,三角板的知识,正确添加辅助线,熟练掌握平行线的判定与性质是解题的关键.21、详见解析.【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为无理数的线段,画三角形即可;(3)画边长为的正方形即可.【题目详解】三边分别为3,4,5(如图);(2)(3)画一个边长为的正方形.【题目点拨】考查了格点三角形的画法.本题需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.22、(1)证明过程见详解;(2)①;②结论成立,证明见详解【分析】(1)先证明,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①;由等边三角形的性质和已知条件得出AM⊥BC,∠CAP=30°,可得PB=PC,由∠BPC=120°和等腰三角形的性质可得∠PCB=30°,进而可得AP=PC,由30°角的直角三角形的性质可得PC=2PM,于是可得结论;②延长BP至D,使PD=PC,连接AD、CD,根据SAS可证△ACD≌△BCP,得出AD=BP,∠ADC=∠BPC=120°,然后延长PM至N,使MN=MP,连接CN,易证△CMN≌△BMP(SAS),可得CN=BP=AD,∠NCM=∠PBM,最后再根据SAS证明△ADP≌△NCP,即可证得结论.【题目详解】(1)证明:因为△ABC为等边三角形,所以∵,∴,∴,在四边形AEPD中,∵,∴,∴,∴;(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠CAP=∠BAC=30°,∴PB=PC,∵∠BPC=120°,∴∠PBC=∠PCB=30°,∴PC=2PM,∠ACP=60°﹣30°=30°=∠CAP,∴AP=PC,∴AP=2PM;故答案为:;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN≌△BMP(SAS),∴CN=BP=AD,∠NCM=∠PBM,∴CN∥BP,∴∠NCP+∠BPC=180°,∴∠NCP=60°=∠ADP,在△ADP和△NCP中,∵AD=NC,∠ADP=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论