河北省邯郸市临漳县2024届数学八上期末监测试题含解析_第1页
河北省邯郸市临漳县2024届数学八上期末监测试题含解析_第2页
河北省邯郸市临漳县2024届数学八上期末监测试题含解析_第3页
河北省邯郸市临漳县2024届数学八上期末监测试题含解析_第4页
河北省邯郸市临漳县2024届数学八上期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邯郸市临漳县2024届数学八上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2 D.a:b:c=3:4:62.如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A的坐标为(﹣1,1),左上角格点B的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是()A. B. C.2 D.3.如图,是直角三角形,,点、分别在、上,且.下列结论:①,②,③当时,是等边三角形,④当时,,其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个4.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm5.七年级一班同学根据兴趣分成五个小组,并制成了如图所示的条形统计图,若制成扇形统计图,第1小组对应扇形圆心角的度数为()A. B. C. D.6.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70° B.80° C.90° D.100°7.若是关于的完全平方式,则的值为()A.7 B.-1 C.8或-8 D.7或-18.在实数(相邻两个2中间一次多1个0)中,无理数有()A.2个 B.3个 C.4个 D.5个9.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA10.如图,,平分,如果射线上的点满足是等腰三角形,那么的度数不可能为()A.120° B.75° C.60° D.30°二、填空题(每小题3分,共24分)11.若a+b=3,ab=2,则=.12.如图,,若,则的度数是__________.13.若(x-2)(x+3)=x2+ax+b,则a+b14.等腰三角形的两边分别为3和7,则这个等腰三角形的周长是_____.15.如图所示,在△ABC中,AD是∠BAC的平分线,G是AD上一点,且AG=DG,连接BG并延长BG交AC于E,又过C作AD的垂线交AD于H,交AB为F,则下列说法:①D是BC的中点;②BE⊥AC;③∠CDA>∠2;④△AFC为等腰三角形;⑤连接DF,若CF=6,AD=8,则四边形ACDF的面积为1.其中正确的是________(填序号).16.若点关于轴的对称点的坐标是,则的值是__________.17.的算术平方根是_____.18.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角分线.若在边AB上截取BE=BC,连接DE,则图中共有_________个等腰三角形.三、解答题(共66分)19.(10分)解二元一次方程组20.(6分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=,T(m,﹣2)=.(1)填空:T(4,﹣1)=(用含a,b的代数式表示);(2)若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.21.(6分)如图,已知和点、求作一点,使点到、的距离相等且.请作出点.(用直尺、圆规作图,不写作法,保留作图痕迹)22.(8分)如图,一次函数y=kx+b的图象经过点A(﹣2,6),与x轴交于点B,与正比例函数y=3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式;(2)若点D在y轴负半轴,且满足S△COD=S△BOC,求点D的坐标.23.(8分)如图,为等边三角形,延长到,延长到,,连结,,求证:.24.(8分)2018年,某县为改善环境,方便居民出行,进行了路面硬化,计划经过几个月使城区路面硬化面积新增400万平方米.工程开始后,实际每个月路面硬化面积是原计划的2倍,这样可提前5个月完成任务.(1)求实际每个月路面硬化面积为多少万平方米?(2)工程开始2个月后,随着冬季来临,气温下降,县委、县政府决定继续加快路面硬化速度,要求余下工程不超过2个月完成,那么实际平均每个月路面硬化面积至少还要增加多少万平方米?25.(10分)如图,中,BD平分,于点E,于F,,,,求DE长.26.(10分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?

参考答案一、选择题(每小题3分,共30分)1、D【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【题目详解】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2−b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.

故选:D.【题目点拨】本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、B【分析】由直线解析式可知:该直线过定点(﹣1,0),画出图形,由图可知:在直线CD和直线CE之间,两侧格点相同,再根据E、D两点坐标求k的取值【题目详解】解:∵直线y=﹣k(x+1)过定点(﹣1,0),分布在直线y=﹣k(x+1)两侧的格点数相同,由正方形的对称性可知,直线y=﹣k(x+1)两侧的格点数相同,∴在直线CD和直线CE之间,两侧格点相同,(如图)∵E(﹣3,3),D(﹣3,4),∴﹣1<﹣k<﹣,则<k<1.故选B.【题目点拨】此题考查的是一次函数与图形问题,根据一次函数的图像与点的坐标的位置关系求k的取值是解决此题的关键.3、D【分析】①②构造辅助圆,利用圆周角定理解决问题即可;

③想办法证明BD=AD即可;

④想办法证明∠BAD=45°即可解决问题.【题目详解】解:如图,由题意:,以A为圆心AB为半径,作⊙A.∵

∴,故①②正确,当时,∠DAC=∠C,

∵∠BAD+∠DAC=90°,∠ABD+∠C=90°,

∴∠BAD=∠ABD,

∴BD=AD,

∵AB=AD,

∴AB=AD=BD,

∴△ABD是等边三角形,故③正确,

当时,∠ABD=∠ADB=67.5°,

∴∠BAD=180°−2×67.5°=45°,

∴∠DAE=∠BAD=45°,

∵AB=AE,AD=AD,

∴△BAD≌△EAD(SAS),∴,故④正确.

故选:D.【题目点拨】本题考查全等三角形的判定和性质,圆周角定理,等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.4、D【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【题目详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【题目点拨】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.5、C【分析】根据扇形圆心角的度数为本组人数与总人数之比,再乘以360°进行计算即可.【题目详解】由题意可得,第1小组对应扇形圆心角的度数为,故选C.【题目点拨】本题考查条形图和扇形图的相关计算,解题的关键是理解扇形圆心角与条形图中人数的关系.6、C【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果.【题目详解】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠BPC=20°,∴∠P=180°-∠PBC-∠BCP=30°,∴∠A+∠P=90°,故选:C.【题目点拨】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,掌握角平分线的定义是解题的关键.7、D【分析】利用完全平方公式的结构特征判断即可确定出m的值.【题目详解】∵x2−2(m−3)x+16是关于x的完全平方式,∴m−3=±4,解得:m=7或−1,故选:D.【题目点拨】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8、B【解题分析】先根据立方根、算术平方根进行计算,再根据无理数的概念判断.【题目详解】是有理数,,,(相邻两个2中间一次多1个0)是无理数,共3个,故选:B.【题目点拨】本题考查的是无理数的概念、立方根、算术平方根,掌握无限不循环小数叫做无理数是解题的关键.9、D【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【题目详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【题目点拨】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.10、C【分析】分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC是度数即可得到答案.【题目详解】∵,平分,∠AOC=30,当OC=CE时,∠OEC=∠AOC=30,当OE=CE时,∠OEC=180120,当OC=OE时,∠OEC=(180)=75,∴∠OEC的度数不能是60°,故选:C.【题目点拨】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.二、填空题(每小题3分,共24分)11、1.【解题分析】试题分析:将a+b=3平方得:,把ab=2代入得:=5,则==5﹣4=1.故答案为1.考点:完全平方公式.12、【分析】根据平行线的性质得出,然后利用互补即可求出的度数.【题目详解】∵故答案为:.【题目点拨】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.13、-5【解题分析】利用多项式乘以多项式的运算法则计算(x-2)(x+3),即可求得a、b的值,由此即可求得a+b的值.【题目详解】∵x-2x+3=x∴a=1,b=-6,∴a+b=1+(-6)=-5.故答案为:-5.【题目点拨】本题考查了多项式乘以多项式的运算法则,熟练运用多项式乘以多项式的运算法则计算出x-2x+3=14、1【分析】因为题目的已知条件底边和腰没有确定,所以分两种情况讨论.【题目详解】解:(1)当7是底边时,3+3<7,不能构成三角形;

(2)当3是底边时,可以构成三角形,周长=7+7+3=1.

故答案为:1.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15、③④⑤【分析】①中依据已知条件无法判断BD=DC,可判断结论错误;②若BE⊥AC,则∠BAE+∠ABE=90°,结合已知条件可判断;③根据三角形外角的性质可判断;④证明△AHF≌△AHC,即可判断;⑤四边形ACDF的面积等于△AFC的面积与△DFC的面积之和,据此可判断.【题目详解】解:①根据已知条件无法判断BD=DC,所以无法判断D是BC的中点,故错误;②只有∠BAE和∠BAC互余时才成立,故错误;③正确.∵∠ADC=∠1+∠ABD,∠1=∠2,

∴∠ADC>∠2,故②正确;④正确.∵∠1=∠2,AH=AH,∠AHF=∠AHC=90°,

∴△AHF≌△AHC(ASA),

∴AF=AC,△AFC为等腰三角形,故④正确;⑤正确.∵AD⊥CF,.故答案为:③④⑤.【题目点拨】本题考查三角形的中线、角平分线、高线,全等三角形的性质和判定,对角线垂直的四边形的面积,三角形外角的性质.能依据定理分析符合题述结论的依据是解决此题的关键.16、-1【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得3=n,m+4=0,解出m、n的值,可得答案.【题目详解】解:∵点关于轴的对称点的坐标是,∴3=n,m+4=0,∴n=3,m=-4,∴m+n=-1.故答案为:-1.【题目点拨】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.17、2【题目详解】∵,的算术平方根是2,∴的算术平方根是2.【题目点拨】这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.18、1.【解题分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【题目详解】∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°−∠DBC−∠C=180°−36°−72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°−36°)÷2=72°,∴∠ADE=∠BED−∠A=72°−36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有1个.故答案为1.考点:等腰三角形的判定三、解答题(共66分)19、,.【分析】利用加减消元法求解可得.【题目详解】,①+②,得,,把代入②,得,解得,所以原方程的解为.【题目点拨】本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键.20、(1);(2)①a=1,b=-1,②m=2.【分析】(1)根据题目中的新运算法则计算即可;(2)①根据题意列出方程组即可求出a,b的值;②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论.【题目详解】解:(1)T(4,﹣1)==;故答案为;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,当T(x,y)=T(y,x)时,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【题目点拨】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..21、答案见解析【分析】作出∠ECD的平分线,线段AB的垂直平分线,两线的交点就是P点.【题目详解】解:如图所示:点P为所求.【题目点拨】此题主要考查了复杂作图,解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)线段垂直平分线上的点到线段两端点的距离相等.22、(1)y=﹣x+4;(2)D(0,﹣4)【分析】(1)先求得点C的坐标,再根据待定系数法即可得到AB的函数表达式;

(2)设D(0,m)(m<0),依据S△COD=S△BOC,即可得出m=-4,进而得到D(0,-4).【题目详解】解:(1)当x=1时,y=3x=3,∴C(1,3),将A(﹣2,6),C(1,3)代入y=kx+b,得,解得,∴直线AB的解析式是y=﹣x+4;(2)y=﹣x+4中,令y=0,则x=4,∴B(4,0),设D(0,m)(m<0),S△BOC=×OB×|yC|==6,S△COD=×OD×|xC|=|m|×1=﹣m,∵S△COD=S△BOC,∴﹣m=,解得m=﹣4,∴D(0,﹣4).【题目点拨】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题时注意利用待定系数法解题.23、详见解析【分析】根据题意首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【题目详解】解:证明:延长至,使,连接,如图所示,为等边三角形,,为等边三角形,,,,.【题目点拨】本题主要考查等边三角形的性质与判定以及全等三角形的判定等知识,解决问题的关键是学会添加常用辅助线,构造全等三角形解决问题.24、(1)实际每个月地面硬化面积80万平方米;(2)实际平均每个月地面硬化面积至少还要增加40万平方米.【分析】(1)设原计划每个月路面硬化面积为万平方米,则实际每个月路面硬化面积为2万平方米,根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论