版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省泸州市叙永县第二中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图是正方体的平面展开图,则在这个正方体中:①与平行.②与是异面直线.③与垂直.④与是异面直线.以上四个命题中正确的个数是(
)参考答案:2.已知集合;,则中所含元素的个数为(
)
A.
B.
C.
D.参考答案:D3.下列说法正确的是(
).A.三点确定一个平面
B.一条直线和一个点确定一个平面C.梯形一定是平面图形
D.过平面外一点只有一条直线与该平面平行参考答案:C4.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.某人出版了一书共纳税420元,这个人的稿费为A.3818元
B.5600元
C.3800元
D.3000元参考答案:C5.在三棱锥P-ABC中,PC⊥平面ABC,,,,,则三棱锥P-ABC外接球的体积为(
)A.100π B. C.125π D.参考答案:B【分析】在三棱锥中,求得,又由底面,所以,在直角中,求得,进而得到三棱锥外接球的直径,得到,利用体积公式,即可求解.【详解】由题意知,在三棱锥中,,,,所以,又由底面,所以,在直角中,,所以,根据球的性质,可得三棱锥外接球的直径为,即,所以球的体积为,故选B.【点睛】本题主要考查了与球有关的组合体中球的体积的计算,其中解答中根据组合体的结构特征和球的性质,准确求解球的半径是解答的关键,着重考查了推理与运算能力,属于中档试题.6.终边在第二象限的角的集合可以表示为:
(
)
A.{α∣90°<α<180°}
B.{α∣90°+k·180°<α<180°+k·180°,k∈Z}C.{α∣-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}参考答案:D7.已知变量满足约束条件,则的最小值为A.-6 B.-5 C.1 D.3参考答案:B8.设变量满足约束条件,则的最大值为
(
)A.2
B.
C.
D.4参考答案:B略9.集合M={α=k,k∈Z}中,各角的终边都在(
)A.轴正半轴上,
B.轴正半轴上,C.轴或轴上,D.轴正半轴或轴正半轴上
参考答案:C10.已知集合A={x|x2+x﹣2<0},B={x|x>0},则集合A∩B等于()A.{x|x>﹣2} B.{x|0<x<1} C.{x|x<1} D.{x|﹣2<x<1}参考答案:B【考点】交集及其运算.【专题】集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣1)(x+2)<0,解得:﹣2<x<1,即A={x|﹣2<x<1},∵B={x|x>0},∴A∩B={x|0<x<1},故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题关键.二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,∠C=60°,a,b,c分别为∠A、∠B、∠C的对边,则______参考答案:1
12.若在上恒成立,则实数的取值范围为▲
.参考答案:13.设方程2x+x=4的根为x0,若x0∈(k﹣,k+),则整数k=
.参考答案:1【考点】二分法求方程的近似解.【专题】计算题.【分析】令f(x)=2x+x﹣4,由f(x)的单调性知:f(k﹣)<0,且f(k+)>0,根据k取整数,从而确定k值.【解答】解:令f(x)=2x+x﹣4,则f(x0)=0,且f(x)=2x+x﹣4在定义域内是个增函数,∴f(k﹣)<0,且f(k+)>0即:+k﹣﹣4<0,且+k+﹣4>0又k取整数,∴k=1;故答案为1.【点评】联系用二分法求函数近似解的方法,构造f(x)=2x+x﹣4,由f(k﹣)<0,且f(k+)>0及k取整数,来确定k值.14.已知函数在区间(-2,+∞)上是增函数,则实数a的取值范围是
.参考答案:15.函数的定义域为.参考答案:【考点】HD:正切函数的定义域.【分析】利用正切函数的定义域,直接求出函数的定义域即可.【解答】解|:函数的有意义,必有,所以函数的定义域.故答案为:.16.如果一扇形的弧长为2πcm,半径等于2cm,则扇形所对圆心角为.参考答案:π【考点】弧长公式.【专题】计算题;对应思想;定义法;三角函数的求值.【分析】直接根据弧长公式解答即可.【解答】解:一扇形的弧长为2πcm,半径等于2cm,所以扇形所对的圆心角为n===π.故答案为:π.【点评】本题主要考查了弧长公式的应用问题,熟记公式是解题的关键.17.若a,b,c∈R,且满足,则实数a的取值范围是________.参考答案:[1,5]目标求a的取值范围,故要消去变量b,c.由条件:
∴∵b2+c2=-a2+14a+5≥0∴a2-14a-5≥0
∵b2+c2≥2bc∴-a2+14a+5≥2(a2-2a+10)∴a2-6a+5≤0∴∴1≤a≤5.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(16分)已知二次函数f(x)对任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+m,(m∈R).①若存在实数a,b(a<b),使得g(x)在区间[a,b]上为单调函数,且g(x)取值范围也为[a,b],求m的取值范围;②若函数g(x)的零点都是函数h(x)=f(f(x))+m的零点,求h(x)的所有零点.参考答案:【考点】二次函数的性质;根的存在性及根的个数判断.【分析】(1)设二次函数f(x)的解析式为f(x)=ax2+bx+c,利用待定系数法求解即可.(2)g(x)=﹣x2+4x+m,对称轴x=2,g(x)在区间[a,b]上单调,b≤2或a≥2,①1°当b≤2时,2°当a≥2时,列出不等式组,求解m的取值范围为;②(法一)设x0为g(x)的零点,则,求出m=0或m=﹣3,1°当m=0时,求出h(x)所有零点为0,2,4;2°当m=﹣3时,求出h(x)所有零点为;(法二)函数g(x)的零点都是函数h(x)的零点,﹣(﹣x2+4x)2+4(﹣x2+4x)+m=﹣(﹣x2+4x+m)(﹣x2+sx+t),展开对应系数相等求解即可.【解答】解:(1)设二次函数f(x)的解析式为f(x)=ax2+bx+c,则f(x+2)﹣f(x)=a(x+2)2+b(x+2)+c﹣(ax2+bx+c)=4ax+4a+2b…(2分)由f(x+2)﹣f(x)=﹣4x+4得(4a+4)x+4a+2b﹣4=0恒成立,又f(0)=0所以,所以,所以f(x)=﹣x2+4x…(2)g(x)=﹣x2+4x+m,对称轴x=2,g(x)在区间[a,b]上单调,所以b≤2或a≥2①1°当b≤2时,g(x)在区间[a,b]上单调增,所以,即a,b为g(x)=x的两个根,所以只要g(x)=x有小于等于2两个不相等的实根即可,所以x2﹣3x﹣m=0要满足,得…(6分)2°当a≥2时,g(x)在区间[a,b]上单调减,所以,即两式相减得(b﹣a)(a+b﹣5)=0,因为b>a,所以a+b﹣5=0,所以m=a2﹣5a+5,,得…(9分)综上,m的取值范围为…(10分)②(法一)设x0为g(x)的零点,则,即,即﹣m2﹣4m+m=0,得m=0或m=﹣3…(12分)1°当m=0时,h(x)=﹣(﹣x2+4x)2+4(﹣x2+4x)=﹣x(x﹣4)(x2﹣4x+4)所以h(x)所有零点为0,2,4…(14分)2°当m=﹣3时,h(x)=﹣(﹣x2+4x)2+4(﹣x2+4x)﹣3=﹣(﹣x2+4x﹣3)(﹣x2+4x﹣1)(因为必有因式﹣x2+4x﹣3,所以容易分解因式)由﹣x2+4x﹣3=0和﹣x2+4x﹣1=0得,所以h(x)所有零点为…(16分)(法二)函数g(x)的零点都是函数h(x)的零点,所以﹣(﹣x2+4x)2+4(﹣x2+4x)+m中必有因式﹣x2+4x+m,所以可设:﹣(﹣x2+4x)2+4(﹣x2+4x)+m=﹣(﹣x2+4x+m)(﹣x2+sx+t)展开对应系数相等得或(下同法一).【点评】本题考查函数的零点的求法,二次函数的性质,待定系数法以及转化思想的应用,考查计算能力.19.在△ABC中,角A,B,C对应的边分别是a,b,c,且.(1)求角C;(2)若,求的取值范围.参考答案:(1);(2).【分析】(1)依照条件形式,使用正弦定理化角为边,再用余弦定理求出,从而得出角的值;(2)先利用余弦定理找出的关系,再利用基本不等式放缩,求出的取值范围。详解】(1)由及正弦定理得,,由余弦定理得,又,所以(2)由及,得,即所以,所以,当且仅当时,等号成立,又,所以.【点睛】本题主要考查利用正余弦定理解三角形,以及利用基本不等式求等式条件下的取值范围问题,第二问也可以采用正弦定理化边为角,利用“同一法”求出的取值范围。20.已知指数函数满足:g(2)=4,定义域为,函数是奇函数.(1)确定的解析式;(2)求m,n的值;(3)若对任意的,不等式恒成立,求实数的取值范围.参考答案:解:(1)
……3分(2)由(1)知:(也可以赋其他值)(3)由(2)知,易知在上为减函数。……9分因为是奇函数,所以
,……11分.……16分
21.在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为AD,A1B1的中点.(1)求证:DB1⊥CD1;(2)求三棱锥B﹣EFC的体积.参考答案:【考点】棱柱、棱锥、棱台的体积.【分析】(1)推导出CD1⊥B1C1,DC1⊥CD1,从而CD1⊥平面DB1C1,由此能证明DB1⊥CD1.(2)三棱锥B﹣EFC的体积VB﹣EFC=VF﹣BEC.由此能求出结果.【解答】(本小题满分12分)证明:(1)在棱长为2的正方体ABCD﹣A1B1C1D1中,B1C1⊥面CC1D1D,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024新版房产交易居间合同合集版B版
- 二零二五年度多功能吊车租赁及培训服务合同2篇
- 2025年度广告创意策划与实施合同3篇
- 2024年简明物流服务协议样本版B版
- 二零二五年CNG配送能源安全保障协议2篇
- 2024版消防工程分包施工协作协议典范版B版
- 2024年高端汽车零部件全球采购合作协议版B版
- 2024提成协议书模板(金融产品销售)3篇
- 二零二五年度别墅二手房买卖合同参考范本3篇
- 2024年简约家居装修设计合同
- 窗帘采购投标方案(技术方案)
- 电力安全工作规程考试试题(答案)
- 2024-2030年串番茄行业市场发展分析及前景趋势与投资研究报告
- 城市燃气管网改造合同
- 2024-2025学年广东省东莞市高三思想政治上册期末试卷及答案
- 《水电站建筑物》课件
- 9-XX人民医院样本外送检测管理制度(试行)
- 场地硬化合同范文
- 智力残疾送教上门教案
- 2024北京市公安局平谷分局勤务辅警人员招聘笔试参考题库含答案解析
- 单位信息化建设IT建设项目后评估报告(模板)
评论
0/150
提交评论