2022年山东省枣庄市峨山中学高二数学理上学期期末试题含解析_第1页
2022年山东省枣庄市峨山中学高二数学理上学期期末试题含解析_第2页
2022年山东省枣庄市峨山中学高二数学理上学期期末试题含解析_第3页
2022年山东省枣庄市峨山中学高二数学理上学期期末试题含解析_第4页
2022年山东省枣庄市峨山中学高二数学理上学期期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山东省枣庄市峨山中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,已知函数f(x)的图象关于坐标原点对称,则函数f(x)的解析式可能是(

)A. B.C. D.参考答案:C【分析】根据函数图像的对称性,单调性,利用排除法求解.【详解】由图象知,函数是奇函数,排除,;当时,显然大于0,与图象不符,排除D,故选C.【点睛】本题主要考查了函数的图象及函数的奇偶性,属于中档题.2.设ξ~B(n,p),Eξ=12,Dξ=4则n,p的值分别为()A.18, B.36, C.,36 D.18,参考答案:D【考点】CN:二项分布与n次独立重复试验的模型.【分析】由ξ~B(n,p),Eξ=12,Dξ=4,知np=12,np(1﹣p)=4,由此能求出n和p.【解答】解:∵Eξ=12,Dξ=4,∴np=12,np(1﹣p)=4,∴n=18,p=.故选D.【点评】本题考查离散型随机变量的期望和方差,解题时要注意二项分布的性质和应用.3.下列表述正确的是①归纳推理是由部分到整体的推理;

②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;

④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.

A.①③⑤

B.②③④

C.②④⑤

D.①②③参考答案:A略4.下列式子不正确的是

(

)A.

B.C.

D.参考答案:C略5.按流程图的程序计算,若开始输入的值为x=3,则输出的x的值是(

) A.6 B.21 C.156 D.231参考答案:D考点:程序框图.专题:图表型.分析:根据程序可知,输入x,计算出的值,若≤100,然后再把作为x,输入,再计算的值,直到>100,再输出.解答: 解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231>100,停止循环则最后输出的结果是231,故选D.点评:此题考查的知识点是代数式求值,解答本题的关键就是弄清楚题图给出的计算程序.6.的展开式中x4的系数为

()A.64

B.70

C.84 D.90参考答案:C7.设是等差数列的前n项和,若(

)A.

B.

C.

D.参考答案:A8.已知函数有两个极值点,则实数m的取值范围为(

)A. B.C. D.参考答案:A【分析】求函数的导数,函数有两个极值点,可转为有两个不同零点,变量分离,令,分析函数g(x)的单调性,最值,可得m范围.【详解】函数,定义域为R,因为函数f(x)有两个极值点,所以有两个不同的零点,故关于x的方程有两个不同的解,令,则,当x∈(﹣∞,1)时,g'(x)>0,在区间(﹣∞,1)上单调递增,当x∈(1,+∞)时,g'(x)<0,在区间(1.+∞)上单调递减,又当x→﹣∞时,g(x)→﹣∞;当x→+∞时,g(x)→0,且,故,所以,故选:A.【点睛】本题考查函数的导数以及函数的极值,函数的单调性的应用,考查转化思想以及计算能力,属于中档题.9.已知实数满足,则有

A.最小值和最大值1

B.最小值和最大值1

B.最小值和最大值

D.最小值1参考答案:B10.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第()个数.A.6

B.9

C.10D.8参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.下列命题:(1)(2)定义在R上的函数的图像在,则在内至少有一个零点(3),若,则是正三角形其中正确的命题有

个参考答案:12.在直角三角形中,两直角边分别为,设为斜边上的高,则,由此类比:三棱锥的三个侧棱两两垂直,且长分别为,设棱锥底面上的高为,则

.

参考答案:13.若向量,则这两个向量的位置关系是___________。参考答案:垂直

解析:14.若函数且是偶函数,则函数f(x)的值域为_______.参考答案:[2,+∞)【分析】根据函数为偶函数可构造方程求得,利用基本不等式可求得函数的最小值,从而得到函数值域.【详解】由为偶函数可得:即,解得:

(当且仅当,即时取等号),即的值域为:[2,+∞)本题正确结果:[2,+∞)【点睛】本题考查函数值域的求解,关键是能够通过函数的奇偶性求得函数的解析式.15.命题“”的否定是

。参考答案:16.已知,为第四象限角,则

.参考答案:略17.已知圆C过点(1,0),且圆心在轴的正半轴上,直线被该圆所截得的弦长为,则圆C的标准方程为

。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)如图,E为矩形ABCD所在平面外一点,平面ABE,AE=EB=BC=2,F为CE上的点,且平面ACE,(Ⅰ)求证:平面BCE;(Ⅱ)G为矩形ABCD对角线的交点,求三棱锥C—BGF的体积。参考答案:(Ⅰ)证明:平面ABE,AD//BC。平面ABE,则又平面ACE,则又平面BCE。

(Ⅱ)由题意,得G是AC的中点,而BC=BE,F是EC的中点AE//FG,且而平面BCE,∴平面BCF。

19.某地区2006年至2012年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2006200720082009201020112012年份代号t1234567人均纯收入y2.93.33.64.44.85.25.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2006年至2012年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2014年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:..参考答案:【考点】线性回归方程.【专题】概率与统计.【分析】(Ⅰ)根据数据求出样本平均数以及对应的系数即可求y关于t的线性回归方程;(Ⅱ)根据条件进行估计预测即可得到结论.【解答】解:(Ⅰ)由题意得=4,==4.3,==0.5.=4.3﹣0.5×4=2.3即y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)∵线性回归方程为=0.5t+2.3;斜率k=0.5>0,可知2006年至2012年该地区农村居民家庭人均纯收入逐渐增加,平均增加0.5千元,当t=9时,=0.5×9+2.3=6.8;预测该地区2014年农村家庭人均纯收入为6.8千元.【点评】本题主要考查线性回归方程的求解以及应用,根据数据求出相应的系数是解决本题的关键.考查学生的运算能力.20.已知椭圆,该椭圆上、左、下顶点及右焦点围成的四边形面积为,离心率为.(1)求椭圆的方程;(2)如图,若矩形的三条边都与该椭圆相切,求矩形面积的最大值.参考答案:21.已知满足:.(I)若,求的最小值;(II)解关于的不等式:.参考答案:2)22.如图,点F1,F2分别是椭圆C:的左、右焦点.点A是椭圆C上一点,点B是直线AF2与椭圆C的另一交点,且满足AF1⊥x轴,∠AF2F1=30°.(1)求椭圆C的离心率e;(2)若△ABF1的周长为,求椭圆C的标准方程;(3)若△ABF1的面积为,求椭圆C的标准方程.参考答案:【考点】椭圆的简单性质.【专题】计算题;综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)通过求解直角三角形得到A的坐标,代入椭圆方程整理,结合隐含条件求得椭圆C的离心率e;(2)通过椭圆定义结合三角形的周长及隐含条件求得答案;(3)由(1)得到a与c,b与c的关系,设直线AF2的方程为,代入2x2+3y2=6c2化简整理,求得B的坐标,再由点到直线的距离公式结合三角形面积求得答案.【解答】解:(1)Rt△AF1F2中,∵∠AF2F1=30°,∴,则,代入并利用b2=a2﹣c2化简整理,得3a4﹣2a2c2﹣3c4=0,即(a2﹣3c2)(3a2﹣c2)=0,∵a>c,∴,∴.(2)由椭圆定义知AF1+AF2=BF1+BF2=2a,∴△ABF1的周长为4a,∴,则,,故椭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论