2022-2023学年广东省湛江市吴川城东中学高二数学理上学期期末试卷含解析_第1页
2022-2023学年广东省湛江市吴川城东中学高二数学理上学期期末试卷含解析_第2页
2022-2023学年广东省湛江市吴川城东中学高二数学理上学期期末试卷含解析_第3页
2022-2023学年广东省湛江市吴川城东中学高二数学理上学期期末试卷含解析_第4页
2022-2023学年广东省湛江市吴川城东中学高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年广东省湛江市吴川城东中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下面使用类比推理正确的是

A.“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”

B.“若(a+b)c=ac+bc”类推出“(a·b)c=ac·bc”

C.“若(a+b)c=ac+bc”类推出“”

D.“”类推出“”参考答案:C2.若中,则的形状为(

A.等边三角形

B.等腰三角形

C.直角三角形

D.等腰或直角三角形参考答案:D3.已知0<x<1,0<y<1,则的最小值为()A.B.C.2D.8参考答案:A考点:有理数指数幂的化简求值.专题:函数的性质及应用.分析:直接利用四个和式的几何意义求得答案.解答:解:根号表示点(x,y)与原点(0,0)之间的距离,根号表示点(x,y)与点(0,1)之间的距离,表示点(x,y)与点(1,0)之间的距离,表示点(x,y)与点(1,1)之间的距离,∴函数就是四个距离之和,满足条件0<x<1,0<y<1的点(x,y)位于矩形内,则距离之和的最小值就是此矩形的对角线长的2倍,等于.故选:A.点评:本题考查了函数值的求法,考查了数学转化思想方法,关键是转化为几何意义,是中档题.4.(5分)(2005?福建)从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有()A.300种B.240种C.144种D.96种参考答案:B【分析】根据题意,使用间接法,首先计算从6人中选4人分别到四个城市游览的情况数目,再分析计算其包含的甲、乙两人去巴黎游览的情况数目,进而由事件间的关系,计算可得答案.【解答】解:根据题意,由排列公式可得,首先从6人中选4人分别到四个城市游览,有A64=360种不同的情况,其中包含甲到巴黎游览的有A53=60种,乙到巴黎游览的有A53=60种,故这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有360﹣60﹣60=240种;故选B.【点评】本题考查排列的应用,注意间接法比直接分析更为简便,要使用间接法.5.若a,b,c>0且,则的最小值为……(

A.

B.

C.2

D.4参考答案:B6.椭圆+=1的离心率是()A. B. C. D.参考答案:C【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】椭圆+=1中a=3,b=2,求出c,即可求出椭圆+=1的离心率.【解答】解:∵椭圆+=1中a=3,b=2,∴c==,∴e==,故选:C.【点评】此题考查学生掌握椭圆的离心率的求法,灵活运用椭圆的简单性质化简求值,是一道基础题.7.根据下列各图中三角形的个数,推断第10个图中三角形的个数是(

)A.60

B.62

C.65

D.66参考答案:D8.抛物线的焦点坐标是(

)A.

B.

C.

D.参考答案:C略9.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”:丙说:“甲、乙两人中有一人是小偷”:丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲 B.乙 C.丙 D.丁参考答案:B【考点】F4:进行简单的合情推理.【分析】这个问题的关键是四人中有两人说真话,另外两人说了假话,这是解决本题的突破口;然后进行分析、推理即可得出结论.【解答】解:在甲、乙、丙、丁四人的供词不达意中,可以看出乙、丁两人的观点是一致的,因此乙、丁两人的供词应该是同真或同假(即都是真话或者都是假话,不会出现一真一假的情况);假设乙、丁两人说的是真话,那么甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论;显然这两个结论是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯,乙、丙、丁中有一人是罪犯,由丁说假说,丙说真话,推出乙是罪犯.故选B.10.已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m的值为()A.16 B.12 C.32 D.6参考答案:C【考点】利用导数求闭区间上函数的最值.【分析】先求导函数,研究出函数在区间[﹣3,3]上的单调性,从而确定出函数最值的位置,求出函数的最值,即可求M﹣m.【解答】解:∵函数f(x)=x3﹣12x+8∴f′(x)=3x2﹣12令f′(x)>0,解得x>2或x<﹣2;令f′(x)<0,解得﹣2<x<2故函数在[﹣2,2]上是减函数,在[﹣3,﹣2],[2,3]上是增函数,所以函数在x=2时取到最小值f(2)=8﹣24+8=﹣8,在x=﹣2时取到最大值f(﹣2)=﹣8+24+8=24即M=24,m=﹣8∴M﹣m=32故选C.二、填空题:本大题共7小题,每小题4分,共28分11.对正整数,设曲线在处的切线与轴交点的纵坐标为,则数列的前项和的公式是参考答案:略12.命题“若,则”的否命题是

(填:真、假)命题.参考答案:假命题的否命题为:若,则,取可得该否命题为假命题.

13.抛物线y=2x2的焦点坐标是.参考答案:(0,)【考点】抛物线的简单性质.【专题】计算题.【分析】先将方程化成标准形式,即,求出p=,即可得到焦点坐标.【解答】解:抛物线y=2x2的方程即

x2=y,∴p=,故焦点坐标为(0,),故答案为:(0,).【点评】本题考查抛物线的标准方程,以及简单性质的应用,把抛物线y=2x2的方程化为标准形式,是解题的突破口.14.某单位为了预测本单位用电量y度气温x℃之间的关系,经过调查收集某4天的数据,得到了回归方程形如=﹣2x+,且其中的=10,=40,预测当地气温为5℃时,该单位的用电量的度数为

.参考答案:50【考点】BK:线性回归方程.【专题】34:方程思想;43:待定系数法;5I:概率与统计.【分析】根据回归方程过样本中心点求出的值,写出回归方程,利用方程计算x=5时的值.【解答】解:根据回归方程=﹣2x+过样本中心点,且=10,=40,∴=40﹣(﹣2)×10=60,∴回归方程为=﹣2x+60,当x=5时,=﹣2×5+60=50,预测当地气温为5℃时,该单位的用电量度数为50.故答案为:50.【点评】本题考查了回归方程过样本中心点的应用问题,是基础题.15.椭圆+=1的内接三角形的最大面积是

。参考答案:ab16.一物体沿着直线以v=2t+3

(t的单位:s,

v的单位:m/s)的速度运动,那么该物体在3~5s间行进的路程是

米。参考答案:22略17.已知,且方程无实数根,下列命题:①方程也一定没有实数根;②若,则不等式对一切实数都成立;③若,则必存在实数,使④若,则不等式对一切实数都成立.其中正确命题的序号是

.参考答案:①②④三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=ex﹣x2﹣ax(a∈R).(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;(Ⅱ)若函数在R上是增函数,求实数a取值范围;(Ⅲ)如果函数g(x)=f(x)﹣(a﹣)x2有两个不同的极值点x1,x2,证明:a>.参考答案:【考点】函数在某点取得极值的条件;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)根据导数的几何意义,可以求出a的值,再根据切点坐标在曲线上和切线上,即可求出b的值,从而得到答案;(2)将函数f(x)在R上是增函数,转化为f'(x)>0在R上恒成立,利用参变量分离转化成a<ex﹣x在R上恒成立,利用导数求h(x)=ex﹣x的最小值,即可求得实数a的取值范围;(3)根据x1,x2是g(x)的两个极值点,可以得到x1,x2是g′(x)=0的两个根,根据关系,利用分析法,将证明不等式转化为,即求的最小值问题,利用导数即可证得结论.【解答】解:(Ⅰ)∵f(x)=ex﹣x2﹣ax,∴f′(x)=ex﹣x﹣a,∴根据导数的几何意义可得,切线的斜率k=f'(0)=1﹣a,∵切线方程为y=2x+b,则k=2,∴1﹣a=2,解得a=﹣1,∴f(x)=ex﹣x2+x,∴f(0)=1,即切点(0,1),∴1=2×0+b,解得b=1;(Ⅱ)由题意f'(x)>0即ex﹣x﹣a≥0恒成立,∴a≤ex﹣x恒成立.设h(x)=ex﹣x,则h′(x)=ex﹣1.当x变化时,h′(x)、h(x)的变化情况如下表:x(﹣∞,0)0(0,+∞)h′(x)﹣0+h(x)减函数极小值增函数∴h(x)min=h(0)=1,∴a≤1;(Ⅲ)∵g(x)=f(x)﹣(a﹣)x2,∴g(x)=ex﹣x2﹣ax﹣ax2+x2=ex﹣ax2﹣ax,∴g′(x)=ex﹣2ax﹣a,∵x1,x2是函数g(x)的两个不同极值点(不妨设x1<x2),∴ex﹣2ax﹣a=0(*)有两个不同的实数根x1,x2当时,方程(*)不成立则,令,则由p′(x)=0得:当x变化时,p(x),p′(x)变化情况如下表:xp(x)﹣﹣0+p′(x)单调递减单调递减极小值单调递增∴当时,方程(*)至多有一解,不合题意;当时,方程(*)若有两个解,则所以,.19.(本题12分)围建一个面积为360平方米的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2米的进出口;如图所示,已知旧墙的维修费用为45元/米,新墙的造价为180元/米,设利用的旧墙的长度为x米,总费用为y(单位:元).(Ⅰ)将y表示为x的函数;

(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

参考答案:解(1)设矩形的另一边长为am则45x+180(x-2)+180·2a=225x+360a-360由已知xa=360,得a=,所以y=225x+

……………6分…..

(II)……….8分当且仅当225x=,即x=24m时等号成立…………..11分∴当x=24m时,修建围墙的总费用最小,最小总费用是10440元…….12分

略20.[10分]

已知的展开式中前三项的系数成等差数列.

(1)求n的值;

(2)求展开式中的常数项;参考答案:21.如图,在四棱锥P﹣ABCED中,PD⊥面ABCD,四边形ABCD为平行四边形,∠DAB=60°,AB=PA=2AD=4,(1)若E为PC中点,求证:PA∥平面BDE(2)求三棱锥D﹣BCP的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)连结AC,BD,交于点O,连结OE,则OE∥AP,由此能证明PA∥平面BDE.(2)求出S△BDC==2,PD==2,由,能求出三棱锥D﹣BCP的体积.【解答】(1)证明:连结AC,BD,交于点O,∵四边形ABCD为平行四边形,∴O是AC中点,∵E是PC中点,∴OE∥AP,又AP?平面BDE,OE?平面BDE,∴PA∥平面BDE.(2)解:∵S△BDC==2,PD==2,∴==4.22.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表组别PM2.5浓度(微克/立方米)频数(天)频率第一组(0,25]30.15第二组(25,50]120.6第三组(50,75]30.15第四组(75,100]20.1(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.参考答案:【考点】B8:频率分布直方图.【分析】(1)设PM2.5的24小时平均浓度在(50,75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75,100)内的两天记为B1,B2,求出基本事件总数,符合条件的基本事件总数,即可求得概率;(2)①由第四组的频率为:0.1得:25a=0.1,解得a值;②利用组中值×频数,可得去年该居民区PM2.5年平均浓度,进而可判断该居民区的环境是否需要改进.【解答】解:(1)设PM2.5的24小时平均浓度在(50,75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论