版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省江南十校2024届高一数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为A B.C. D.2.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.3.给定函数①;②;③;④,其中在区间上单调递减的函数的序号是()A.①② B.②③C.③④ D.①④4.函数的定义域为()A.(-∞,2) B.(-∞,2]C. D.5.设,,,则的大小关系为()A. B.C. D.6.设函数的部分图象如图所示,若,且,则()A. B.C. D.7.已知函数在上是增函数,则的取值范围是()A. B.C. D.8.设,,,则的大小顺序是A. B.C. D.9.的零点所在的一个区间为()A. B.C. D.10.已知集合和关系的韦恩图如下,则阴影部分所表示的集合为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知非零向量、满足,,在方向上的投影为,则_______.12.已知平面向量,的夹角为,,则=______13.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______14.若,则实数的值为______.15.若函数在区间上为减函数,则实数的取值范围为________16.在平面直角坐标系中,已知为坐标原点,,,,若动点,则的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的值;(2)若对任意的,都有求实数的取值范围.18.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:,,)(1)若=3,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少?(2)若=6,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?19.(1)当,求的值;(2)设,求的值.20.已知函数的最小正周期为,再从下列两个条件中选择一个作为已知条件:条件①:的图象关于点对称;条件②:的图象关于直线对称(1)请写出你选择的条件,并求的解析式;(2)在(1)的条件下,求的单调递增区间注:如果选择条件①和条件②分别解答,按第一个解答计分21.在平面直角坐标系中,已知,,动点满足.(1)若,求面积的最大值;(2)已知,是否存在点C,使得,若存在,求点C的个数;若不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用弧长公式、扇形的面积计算公式即可得出【题目详解】设此扇形半径为r,扇形弧长为l=2r则2r+2r=8,r=2,∴扇形的面积为r=故选A【题目点拨】本题考查了弧长公式、扇形的面积计算公式,属于基础题2、A【解题分析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【题目详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.3、B【解题分析】根据指对幂函数性质依次判断即可得答案.【题目详解】解:对于①,在上单调递增;对于②,在上单调递减;对于③,时,在上单调递减;对于④,在上单调递增;故在区间上单调递减的函数的序号是②③故选:B4、D【解题分析】利用根式、分式的性质列不等式组求定义域即可.【题目详解】由题设,,可得,所以函数定义域为.故选:D5、D【解题分析】利用指数函数和对数函数的单调性即可判断.【题目详解】,,,,.故选:D.6、C【解题分析】根据图像求出,由得到,代入即可求解.【题目详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C7、C【解题分析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围【题目详解】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C【题目点拨】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键8、A【解题分析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【题目详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【题目点拨】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.9、A【解题分析】根据零点存在性定理分析判断即可【题目详解】因为在上单调递增,所以函数至多有一个零点,因为,,所以,所以的零点所在的一个区间为,故选:A10、B【解题分析】首先判断出阴影部分表示,然后求得,再求得.【题目详解】依题意可知,,且阴影部分表示.,所以.故选:B【题目点拨】本小题主要考查根据韦恩图进行集合的运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用向量数量积的几何意义得出,在等式两边平方可求出的值,然后利用平面向量数量积的运算律可计算出的值.【题目详解】,在方向上的投影为,,,则,可得,因此,.故答案:.【题目点拨】本题考查平面向量数量积计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题.12、【解题分析】=代入各量进行求解即可.【题目详解】=,故答案.【题目点拨】本题考查了向量模的求解,可以通过先平方再开方即可,属于基础题.13、④【解题分析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【题目详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④14、【解题分析】由指数式与对数式的互化公式求解即可【题目详解】因为,所以,故答案为:15、【解题分析】分类讨论,时根据二次函数的性质求解【题目详解】时,满足题意;时,,解得,综上,故答案为:16、【解题分析】设动点,由题意得动点轨迹方程为则由其几何意义得表示圆上的点到的距离,故点睛:本题主要考查了平面向量的线性运算及其运用,综合了圆上点与定点之间的距离最大值,先给出动点的轨迹方程,再表示出向量的坐标结果,依据其几何意义计算求得结果,本题方法不唯一,还可以直接计算含有三角函数的最值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)代入后,利用余弦的二倍角公式进行求解;(2)先化简得到,进而求出的最大值,求出实数的取值范围.【小问1详解】【小问2详解】因为x∈,所以2x+∈,所以当2x+=,即x=时,取得最大值.所以对任意x∈,等价于≤c.故实数c的取值范围是.18、(1)(2)555(3)9【解题分析】(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出、,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得【小问1详解】解:因为候鸟的飞行速度可以表示为函数,所以将,代入函数式可得:故此时候鸟飞行速度为【小问2详解】解:因为候鸟的飞行速度可以表示为函数,将,代入函数式可得:即所以于是故候鸟停下休息时,它每分钟的耗氧量为555个单位【小问3详解】解:设雄鸟每分钟的耗氧量为,雌鸟每分钟的耗氧量为,依题意可得:,两式相减可得:,于是故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍19、(1);(2)【解题分析】(1)利用商数关系,化弦为切,即可得到结果;(2)利用诱导公式化简,代入即可得到结果.【题目详解】(1)因为,且,所以,原式=(2)∵,【题目点拨】本题考查三角函数的恒等变换,涉及到正余弦的齐次式(弦化切),诱导公式,属于中档题.20、(1)(2)【解题分析】(1)根据周期可得,选择条件①:由可求出;选择条件②:由可求出;(2)令可求出单调递增区间.【小问1详解】的最小正周期为,则.选择条件①:因为的图象关于点对称,所以,则,因为,所以,则;选择条件②:因为的图象关于直线对称,所以,则,、因为,所以,则;【小问2详解】由(1),令,解得,所以的单调递增区间为.21、(1)(2)存在2个点C符合要求【解题分析】(1)由,利用两点间距离公式可得,整理得到,由,若面积最大,则到距离最大,即最大,求解即可;(2)由,利用两点间距离公式可得,整理得到,则点为圆与圆的交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电工电子技术(第3版) 课件 3.6 三相异步电机结构
- 2024年无纺布及其制品项目资金申请报告
- 银行内部控制审计办法制度
- 采购部门内部管理与沟通协作制度
- 议论散文《门》课件
- 销售工作总结大全(15篇)
- 《设备的维修与养护》课件
- 论坛推广高级解决方案-案例(倩碧)
- 《供配电线路》课件
- 广东省东莞市第七中学2025届高三下学期联合考试英语试题含解析
- 小班户外运动案例分析与反思
- 天津市河东区2023-2024学年九年级上学期期末数学试题
- 第2课 古代希腊罗马(新教材课件)-【中职专用】《世界历史》(高教版2023•基础模块)
- 2024年省绵阳市招才引智活动面向全国引进高层次和急需紧缺人才6385人高频考题难、易错点模拟试题(共500题)附带答案详解
- 微观经济学(对外经济贸易大学)智慧树知到期末考试答案2024年
- 数学建模与数学软件(山东联盟)智慧树知到期末考试答案2024年
- 生物化学实验(齐鲁工业大学)智慧树知到期末考试答案2024年
- 医院总值班培训课件
- MOOC 创新创业学-西安工业大学 中国大学慕课答案
- 北京市东城区2022-2023学年八年级上学期期末统一检测 数学试卷 (解析版)
- MOOC 财务报表分析-华中科技大学 中国大学慕课答案
评论
0/150
提交评论