版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东北师大附中等六校2024届高一数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,且,则()A. B.C. D.2.设,且,则下列不等式一定成立的是()A. B.C. D.3.若函数在区间上为减函数,在区间上为增函数,则A.3 B.2C. D.4.在,,中,最大的数为()A.a B.bC.c D.d5.()A. B.C. D.6.若,则是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角7.已知集合,集合,则A∩B=()A. B.C. D.8.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.49.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是A. B.C. D.10.设且则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果在实数运算中定义新运算“”:当时,;当时,.那么函数的零点个数为______12.棱长为2个单位长度的正方体中,以为坐标原点,以,,分别为,,轴,则与的交点的坐标为__________13.如图所示,某农科院有一块直角梯形试验田,其中.某研究小组计则在该试验田中截取一块矩形区域试种新品种的西红柿,点E在边上,则该矩形区域的面积最大值为___________.14.已知函数,若在区间上的最大值是,则_______;若在区间上单调递增,则的取值范围是___________15.若函数过点,则的解集为___________.16.如图,扇形的面积是,它的周长是,则弦的长为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(1)求的值;(2)若向量满足,,求向量的坐标.18.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度)(1)求关于的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?19.已知(1)若在第三象限,求的值(2)求的值20.已知函数,.(1)若不等式的解集为,求不等式的解集;(2)若函数在区间上有两个不同的零点,求实数的取值范围21.在①;②“”是“”的充分条件:③“”是“”的必要条件,在这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题问题:已知集合,(1)当时,求;(2)若________,求实数的取值范围注:如果选择多个条件分别解答,按第一个解答计分
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】利用角的关系,再结合诱导公式和同角三角函数基本关系式,即可求解.【题目详解】,,.故选:B2、D【解题分析】利用特殊值及不等式的性质判断可得;【题目详解】解:因为,对于A,若,,满足,但是,故A错误;对于B:当时,,故B错误;对于C:当时没有意义,故C错误;对于D:因为,所以,故D正确;故选:D3、C【解题分析】由题意得当时,函数取得最小值,∴,∴又由条件得函数的周期,解得,∴.选C4、B【解题分析】逐一判断各数的范围,即找到最大的数.【题目详解】因为,所以;;;.故最大.故选:B.【题目点拨】本题考查了根据实数范围比较实数大小,属于基础题.5、D【解题分析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果.【题目详解】因为.故选:D.6、D【解题分析】由已知可得即可判断.【题目详解】,即,则且,是第二象限或第三象限角.故选:D.7、B【解题分析】化简集合B,再求集合A,B的交集即可.【题目详解】∵集合,集合,∴.故选:B.8、B【解题分析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【题目详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B9、A【解题分析】先判断函数为偶函数,且在上单调递增,再依次判断每个选项的奇偶性和单调性得到答案.【题目详解】易知:函数为偶函数,且在上单调递增A.,函数为偶函数,且当时单调递增,满足;B.为偶函数,且当时单调递减,排除;C.函数为奇函数,排除;D.,函数为非奇非偶函数,排除;故选:【题目点拨】本题考查了函数的单调性和奇偶性,意在考查学生对于函数性质的综合应用.10、C【解题分析】试题分析:由已知得,,去分母得,,所以,又因为,,所以,即,选考点:同角间的三角函数关系,两角和与差的正弦公式二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】化简函数的解析式,解方程,即可得解.【题目详解】当时,即当时,由,可得;当时,即当时,由,可得(舍).综上所述,函数的零点个数为.故答案为:.12、【解题分析】设即的坐标为13、【解题分析】设,求得矩形面积的表达式,结合基本不等式求得最大值.【题目详解】设,,,,所以矩形的面积,当且仅当时等号成立.故选:14、①.②.【解题分析】根据定义域得,再得到取最大值的条件求解即可;先得到一般性的单调增区间,再根据集合之间的关系求解.【题目详解】因为,且在此区间上的最大值是,所以因为f(x)max=2tan=,所以tan==,即ω=由,得令,得,即在区间上单调递增又因在区间上单调递增,所以<,即所以的取值范围是故答案为:1,15、【解题分析】由函数过点可求得参数a的值,进而解对数不等式即可解决.详解】由函数过点可得,,则,即,此时由可得即故答案为:16、【解题分析】由扇形弧长、面积公式列方程可得,再由平面几何的知识即可得解.【题目详解】设扇形的圆心角为,半径为,则由题意,解得,则由垂径定理可得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)7;(2).【解题分析】(1)先计算,再求模即可;(2)设,进而计算,,再根据垂直与共线的坐标关系求解即可.【题目详解】解:(1)因为向量,,所以,所以(2)设,,因为,,所以,解得所以18、(1)(2),【解题分析】(1)由弧长计算及扇环面周长为30米,得,所以,(2)花坛的面积为.装饰总费用为,所以花坛的面积与装饰总费用的比,令,则,当且仅当t=18时取等号,此时答:当x=1时,花坛的面积与装饰总费用的比最大.19、(1);(2)-3.【解题分析】直接利用三角函数关系式的恒等变换和同角三角函数关系式的应用求出结果直接利用三角函数关系式的恒等变换和同角三角函数关系式的应用求出结果【题目详解】由于所以,又在第三象限,故:,,则:由于:,所以:【题目点拨】本题主要考查了同角三角函数关系式应用和诱导公式的应用,属于基础题20、(1);(2)【解题分析】(1)根据二次函数与对应一元二次不等式的关系,求出a的值,再解不等式即可;(2)根据二次函数的图象与性质,列出不等式组,求出解集即可.【题目详解】(1)因为不等式的解集为,则方程的两个根为1和2,由根与系数的关系可得,,所以.由,得,即,解得或,所以不等式的解集为;(2)由题知函数,且在区间上有两个不同的零点,则,即,解得,所以实数的取值范围是【题目点拨】本题考查了二次函数的图象与性质的应用问题,也考查了不等式(组)的解法与应用问题,综合性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《店长生鲜知识培训》课件
- 2024年度专利许可使用合同专利描述及许可范围3篇
- 《百事可乐》课件
- 《上海麦宝食品》课件
- 2024广告设计制作合同样本
- 2024外租仓库租赁合同
- 电学方面的课程设计
- 电子配料秤课程设计
- 电子词典系统课程设计
- 电子硬币储钱罐课程设计
- 22数字化学习与创新教学设计2023-2024学年粤教版(2019)高中信息技术必修1
- (新版)管道工(初级)职业鉴定考试题库(含答案)
- 五年(2020-2024)高考语文真题分类汇编(全国)专题18 大作文(教师卷)
- 历年高考物理真题分类汇编合集
- 七年级上册英语UNIT 7 Happy Birthday!单元测试卷(人教河南版)
- 2024年人教版小学三年级信息技术(下册)期末考卷附答案
- CJT511-2017 铸铁检查井盖
- 2024译林版英语初一上单词默写表
- 生鲜肉购销简单合同
- 军事理论-综合版智慧树知到期末考试答案章节答案2024年国防大学
- YC/T 310-2024烟草漂浮育苗基质
评论
0/150
提交评论