版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省隆回县2024届高一数学第一学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或2.已知幂函数在上单调递减,则m的值为()A.0 B.1C.0或1 D.3.焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是A. B.C. D.4.设当时,函数取得最大值,则()A. B.C. D.5.三个数的大小关系为()A. B.C. D.6.已知全集,集合,,则等于()A. B.C. D.7.若直线与直线垂直,则()A.1 B.2C. D.8.在梯形中,,,是边上的点,且.若记,,则()A. B.C. D.9.计算A.-2 B.-1C.0 D.110.函数的零点所在的区间()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.幂函数的图像在第___________象限.12.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________.13.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.14.直线与直线的距离是__________15.函数定义域为________.(用区间表示)16.求值:2+=____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,.(1)求的值;(2)求与夹角的余弦值.18.已知函数(1)判断在区间上的单调性,并用函数单调性的定义给出证明;(2)设(k为常数)有两个零点,且,当时,求k的取值范围19.已知函数(1)求的解析式,并证明为R上的增函数;(2)当时,且的图象关于点对称.若,对,使得成立,求实数的取值范围20.已知函数是偶函数(1)求实数的值(2)设,若函数与的图象有且只有一个公共点,求实数的取值范围21.(1)已知,且,求的值(2)已知,是关于x的方程的两个实根,且,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.2、A【解题分析】根据幂函数得的定义,求得或,结合幂函数的性质,即可求解.【题目详解】由题意,幂函数,可得,解得或,当时,可得,可得在上单调递减,符合题意;当时,可得,可得在上无单调性,不符合题意,综上可得,实数的值为.故选:A.3、C【解题分析】设椭圆方程为:,由题意可得:,解得:,则椭圆的标准方程为:.本题选择D选项4、D【解题分析】利用辅助角公式、两角差的正弦公式化简解析式:,并求出和,由条件和正弦函数的最值列出方程,求出的表达式,由诱导公式求出的值【题目详解】解:函数(其中,又时取得最大值,,,即,,,故选:5、A【解题分析】利用指数对数函数的性质可以判定,从而做出判定.【题目详解】因为指数函数是单调增函数,是单调减函数,对数函数是单调减函数,所以,所以,故选:A6、D【解题分析】先求得集合B的补集,再根据交集运算的定义,即可求得答案.【题目详解】由题意得:,所以,故选:D7、B【解题分析】分析直线方程可知,这两条直线垂直,斜率之积为-1.【题目详解】由题意可知,即故选:B.8、A【解题分析】作出图形,由向量加法的三角形法则得出可得出答案.【题目详解】如下图所示:由题意可得,由向量加法的三角形法则可得.故选:A.【题目点拨】本题考查利用基底来表示向量,涉及平面向量加法的三角形法则的应用,考查数形结合思想的应用,属于基础题.9、C【解题分析】.故选C.10、B【解题分析】,,零点定理知,的零点在区间上所以选项是正确的二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【题目详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.12、.【解题分析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。【题目详解】设圆锥底面半径为r,则由题意得,解得.∴底面圆的面积为.又圆锥的高.故圆锥的体积.【题目点拨】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。13、【解题分析】正四棱柱的高是4,体积是16,则底面边长为2,底面正方形的对角线长度为,所以正四棱柱体对角线的长度为,四棱柱体对角线为外接球的直径,所以球的半径为,所以球的表面积为考点:正四棱柱外接球表面积14、【解题分析】15、【解题分析】由对数真数大于0,偶次根式被开方式大于等于0,列出不等式组求解即可得答案.【题目详解】解:由,得,所以函数的定义域为,故答案为:.16、-3【解题分析】利用对数、指数的性质和运算法则求解【题目详解】解:()lg(1)lg1[()3]2+()02+1=﹣3故答案为﹣3【题目点拨】本题考查对数式、指数式的化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则的合理运用三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-2;(2).【解题分析】(1),,所以;(2)因为,所以代值即可得与夹角的余弦值.试题解析:(1)(2)因为,,所以.18、(1)在区间上的单调递减,证明详见解析;(2)【解题分析】(1)在区间上的单调递减,任取,且,再判断的符号即可;(2)令,得到,根据,转化为有两个零点,且,求解.【小问1详解】解:在区间上的单调递减,证明如下:任取,且,则,因为,所以,因为,所以,所以,即,所以在区间上的单调递减;【小问2详解】令,则,因为,所以,则,即,因为(k为常数)有两个零点,且,,所以(k为常数)有两个零点,且,,所以,解得.19、(1);证明见解析.(2)【解题分析】(1)由求出后可得的解析式,按照增函数的定义证明即可;(2)求出函数在上的值域为,求出在上的最值,根据的最值都属于列式可求出结果.【小问1详解】依题意可得,解得,所以.证明:任取,且,则,因为,,所以,所以为R上的增函数.【小问2详解】依题意,即,当时,为增函数,,,所以在上的值域为,因为在上的最值只可能在或或处取得,所以在上的最值只可能在或或处取得,所以在上的最值只可能是或或,因为的图像关于点对称,所以在上的最值只可能是或或,所以在上的最值只可能是或或或或,若,对,使得成立,则的最值都属于,所以,即,所以,所以,又,所以.【题目点拨】关键点点睛:(2)中,求出在上的最值,根据题意转化为的最值都属于是解题关键.20、(1)(2)【解题分析】(1)根据是偶函数,由成立求解;(2)函数与图象有且只有一个公共点,即方程有且只有一个根,令,转化为方程有且只有一个正根求解.【小问1详解】解:函数,因为是偶函数,所以,即,即对一切恒成立,所以;【小问2详解】因为函数与的图象有且只有一个公共点,所以方程有且只有一个根,即方程有且只有一个根,令,则方程有且只有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年煤矿安全生产法律法规知识考试复习题库及答案
- 委托二手房买卖合同的
- 国家基本药物政策目录及招标相关政策解读课件
- 二零二五年度车队租赁车辆保险及理赔合同范本3篇
- 2025年度个人担保贷款协议书2篇
- 2025年度环保技术合资企业个人股东股权转让协议书4篇
- 二零二五年度工业遗产厂房拆迁补偿与文化传承协议2篇
- 2025年钢材贸易居间代理服务合同范本
- 二零二五年度旅游景区景点租赁服务协议3篇
- 二零二五年度自动化仓库租赁运营合同3篇
- 寺院消防安全培训课件
- 比摩阻-管径-流量计算公式
- 专题23平抛运动临界问题相遇问题类平抛运和斜抛运动
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
- 五年级数学应用题100道
- 西方经济学(第二版)完整整套课件(马工程)
- 高三开学收心班会课件
- GB/T 33688-2017选煤磁选设备工艺效果评定方法
- 科技计划项目申报培训
- 591食堂不合格食品处置制度
- 黑布林绘本 Dad-for-Sale 出售爸爸课件
评论
0/150
提交评论