版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省濮阳市高一数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,,则大小关系为A. B.C. D.2.已知直线与直线平行,则的值为A.1 B.3C.-1或3 D.-1或13.为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在内的产品为一等品,则该企业生产的产品为一等品的概率约为()A.0.38 B.0.61C.0.122 D.0.754.已知,则的值为()A.-4 B.4C.-8 D.85.化简A. B.C.1 D.6.的值域是()A. B.C. D.7.规定从甲地到乙地通话min的电话费由(元)决定,其中>0,[]是大于或等于的最小整数,如[2]=2,[2.7]=3,[2.1]=3,则从甲地到乙地通话时间为4.5min的电话费为()元A.4.8 B.5.2C.5.6 D.68.函数的零点一定位于区间()A. B.C. D.9.直线的倾斜角为()A. B.30°C.60° D.120°10..已知集合,集合,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,,则a、b的大小关系是______.(用“<”连接)12.求值:____.13.已知函数在上的最大值为2,则_________14.的值为______.15.已知函数,若函数恰有4个不同的零点,则实数的取值范围是________.16.,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥的底面为矩形,,.(1)证明:平面平面.(2)若,,,求点到平面的距离.18.已知函数fx=2sin(1)在用“五点法”作函数fx2x-0ππ3π2πx3π5π9πf0200完成上述表格,并在坐标系中画出函数y=fx在区间0,π(2)求函数fx(3)求函数fx在区间-π19.已知函数,(1)求函数的最小正周期;(2)求函数的对称中心;(3)当时,求的最大值和最小值.20.已知函数过定点,函数的定义域为.(Ⅰ)求定点并证明函数的奇偶性;(Ⅱ)判断并证明函数在上的单调性;(Ⅲ)解不等式.21.考虑到高速公路行车安全需要,一般要求高速公路的车速(公里/小时)控制在范围内.已知汽车以公里/小时的速度在高速公路上匀速行驶时,每小时的油耗(所需要的汽油量)为升,其中为常数,不同型号汽车值不同,且满足.(1)若某型号汽车以120公里/小时的速度行驶时,每小时的油耗为升,欲使这种型号的汽车每小时的油耗不超过9升,求车速的取值范围;(2)求不同型号汽车行驶100千米的油耗的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】取中间值0和1分别与这三个数比较大小,进而得出结论【题目详解】解:,,,,故选:D.【题目点拨】本题主要考查取中间值法比较数的大小,属于基础题2、A【解题分析】因为两条直线平行,所以:解得m=1故选A.点睛:本题主要考查直线的方程,两条直线平行与斜率的关系,属于简单题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1),需检验不重合;(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.3、B【解题分析】利用频率组距,即可得解.【题目详解】根据频率分布直方图可知,质量指标值在内的概率故选:B4、C【解题分析】由已知条件,结合同角正余弦的三角关系可得,再将目标式由切化弦即可求值.【题目详解】由题意知:,即,∴,而.故选:C.【题目点拨】本题考查了同角三角函数关系,应用了以及切弦互化求值,属于基础题.5、D【解题分析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【题目详解】化简分母得.故原式等于.故选D【题目点拨】本题主要考查了两角和与差公式以及倍角公式.属于基础题6、A【解题分析】先求得的范围,再由单调性求值域【题目详解】因,所以,又在时单调递增,所以当时,函数取得最大值为,所以值域是,故选:A.7、C【解题分析】计算,代入函数,计算即得结果.【题目详解】由,得.故选:C.8、C【解题分析】根据零点存在性定理,若在区间有零点,则,逐一检验选项,即可得答案.【题目详解】由题意得为连续函数,且在单调递增,,,,根据零点存在性定理,,所以零点一定位于区间.故选:C9、C【解题分析】根据直线的斜率即可得倾斜角.【题目详解】因为直线的斜率为,所以直线的倾斜角为满足,即故选:C.10、A【解题分析】先将分别变形,然后根据数值的奇偶判断出的关系,由此求解出的结果.【题目详解】因为,所以,所以;又因为,所以,所以,又因为表示所有的奇数,表示部分奇数,所以;所以,故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】容易看出,<0,>0,从而可得出a,b的大小关系【题目详解】,>0,,∴a<b故答案为a<b【题目点拨】本题主要考查对数函数的单调性,考查对数函数和指数函数的值域.意在考查学生对这些知识的理解掌握水平和分析推理能力.12、【解题分析】根据诱导公式以及正弦的两角和公式即可得解【题目详解】解:因为,故答案为:13、1【解题分析】先求导可知原函数在上单调递增,求出参数后即可求出.【题目详解】解:在上在上单调递增,且当取得最大值,可知故答案为:114、11【解题分析】进行对数和分数指数幂的运算即可【题目详解】原式故答案为:1115、【解题分析】本题首先可根据函数解析式得出函数在区间和上均有两个零点,然后根据在区间上有两个零点得出,最后根据函数在区间上有两个零点解得,即可得出结果.【题目详解】当时,令,得,即,该方程至多两个根;当时,令,得,该方程至多两个根,因为函数恰有4个不同的零点,所以函数在区间和上均有两个零点,函数在区间上有两个零点,即直线与函数在区间上有两个交点,当时,;当时,,此时函数的值域为,则,解得,若函数在区间上也有两个零点,令,解得,,则,解得,综上所述,实数的取值范围是,故答案为:.【题目点拨】本题考查根据函数零点数目求参数的取值范围,可将其转化为两个函数的交点数目进行求解,考查函数最值的应用,考查推理能力与计算能力,考查分类讨论思想,是难题.16、【解题分析】分和两种情况解方程,由此可得出的值.【题目详解】当时,由,解得;当时,由,解得(舍去).综上所述,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】(1)连接,交于点,连接,证明平面,即可证明出平面平面.(2)用等体积法,即,即可求出答案.【小问1详解】连接,交于点,连接,如图所示,底面为矩形,为,的中点,又,,,,又,平面,平面,平面平面【小问2详解】,,,,在中,,,在中,,在中,,,,,,设点到平面的距离为,由等体积法可知,又平面,为点到平面的距离,,,即点到平面的距离为18、(1)答案见解析(2)单调递增区间:-π8(3)-2,【解题分析】(1)利用给定的角依次求出对应的三角函数值,进而填表,结合“五点法”画出图象即可;(2)根据正弦函数的单调增区间计算即可;(3)根据x的范围求出2x-π4【小问1详解】2x-0ππ3π2πxπ3π5π7π9πf020-20函数图象如图所示,【小问2详解】令-π2+2kπ≤2x-得-π8+kπ≤x≤所以函数fx的单调递增区间:-π8【小问3详解】因为x∈-π4所以sin2x-当2x-π4=-π2当2x-π4=π4所以函数fx在区间-π419、(1)最小正周期(2),(3),【解题分析】(1)利用两角和公式和二倍角公式对函数解析式化简整理,利用周期公式求得函数的最小正周期,利用三角函数图象和性质求得其对称轴方程(2)根据正弦函数的性质计算可得;(3)利用的范围求得的范围,再根据正弦函数的性质求出函数在区间上最大值和最小值【小问1详解】解:即所以的最小正周期为,【小问2详解】解:令,,解得,,所以函数的对称中心为,【小问3详解】解:当时,,所以则当,即时,;当,即时,20、(Ⅰ)定点为,奇函数,证明见解析;(Ⅱ)在上单调递增,证明见解析;(Ⅲ).【解题分析】(Ⅰ)根据解析式可求得定点为,即可得解析式,根据奇函数的定义,即可得证;(Ⅱ)利用定义法即可证明的单调性;(Ⅲ)根据的单调性和奇偶性,化简整理,可得,根据函数的定义域,列出不等式组,即可求得答案.【题目详解】(Ⅰ)函数过定点,定点为,,定义域为,.函数为奇函数.(Ⅱ)上单调递增.证明:任取,且,则.,,,,,即,函数在区间上是增函数.(Ⅲ),即,函数为奇函数在上为单调递增函数,,,解得:.故不等式的解集为:【题目点拨】解题的关键是熟练掌握函数奇偶性、单调性的定义,并灵活应用,在处理单调性、奇偶性综合问题时,需要注意函数所有的自变量都要在定义域内,方可求得正确答案.21、(1);(2)当时,该汽车行驶100千米的油耗的最小值为升;当时,该汽车行驶100千米的油耗的最小值为升.【解题分析】(1)根据题意,可知当时,求出的值,结合条件得出,再结合,即可得出车速的取值范围;(2)设该汽车行驶100千米的油耗为升,得出关于与的函数关系式,通过换元令,则,得出与的二次函数,再根据二次函数的图象和性质求出的最小值,即可得出不同型号汽车行驶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论