湖北省四校2024届高一数学第一学期期末达标检测模拟试题含解析_第1页
湖北省四校2024届高一数学第一学期期末达标检测模拟试题含解析_第2页
湖北省四校2024届高一数学第一学期期末达标检测模拟试题含解析_第3页
湖北省四校2024届高一数学第一学期期末达标检测模拟试题含解析_第4页
湖北省四校2024届高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省四校2024届高一数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调递减区间是()A. B.C. D.2.已知,,则下列不等式中恒成立的是()A. B.C. D.3.下列关于函数的图象中,可以直观判断方程在上有解的是A. B.C. D.4.已知扇形的面积为,当扇形的周长最小时,扇形的圆心角为()A1 B.2C.4 D.85.关于不同的直线与不同的平面,有下列四个命题:①,,且,则②,,且,则③,,且,则④,,且,则其中正确命题的序号是A.①② B.②③C.①③ D.③④6.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件7.已知角的终边上有一点的坐标是,则的值为()A. B.C. D.8.在正内有一点,满足等式,,则()A. B.C. D.9.已知,则a,b,c的大小关系为()A. B.C. D.10.若斜率为2的直线经过,,三点,则a,b的值是A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.1881年英国数学家约翰·维恩发明了Venn图,用来直观表示集合之间的关系.全集,集合,的关系如图所示,其中区域Ⅰ,Ⅱ构成M,区域Ⅱ,Ⅲ构成N.若区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则实数a的取值范围是______12.某医药研究所研发一种新药,如果成年人按规定的剂量服用,服药后每毫升血液中的含药量y(微克)与时间t(时)之间近似满足如图所示的关系.若每毫升血液中含药量不低于0.5微克时,治疗疾病有效,则服药一次治疗疾病的有效时间为___________小时.13.若,,.,则a,b,c的大小关系用“”表示为________________.14.已知函数,若函数有3个零点,则实数a的取值范围是_______.15.已知函数(且)的图象过定点,则点的坐标为______16.已知函数,关于方程有四个不同的实数解,则的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.义域为的函数满足:对任意实数x,y均有,且,又当时,.(1)求的值,并证明:当时,;(2)若不等式对任意恒成立,求实数的取值范围.18.已知向量,,且.(1)的值;(2)若,,且,求的值19.如图,某公园摩天轮的半径为40,圆心O距地面的高度为50,摩天轮做匀速转动,每3转一圈,摩天轮上的点P的起始位置在距地面最近处.(1)已知在时点P距离地面的高度为,求时,点P距离地面的高度;(2)当离地面以上时,可以看到公园的全貌,求转一圈中在点P处有多少时间可以看到公园的全貌.20.已知函数定义域为,若对于任意的,都有,且时,有.(1)判断并证明函数的奇偶性;(2)判断并证明函数的单调性;(3)若对所有,恒成立,求的取值范围.21.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】解不等式,即可得出函数的单调递减区间.【题目详解】解不等式,得,因此,函数的单调递减区间为.故选:D.【题目点拨】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题.2、D【解题分析】直接利用特殊值检验及其不等式的性质判断即可.【题目详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.3、D【解题分析】方程f(x)-2=0在(-∞,0)上有解,∴函数y=f(x)与y=2在(-∞,0)上有交点,分别观察直线y=2与函数f(x)的图象在(-∞,0)上交点的情况,选项A,B,C无交点,D有交点,故选D点睛:这个题目考查了方程有解的问题,把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,要求图像的画法要准确4、B【解题分析】先表示出扇形的面积得到圆心角与半径的关系,再利用基本不等式求出周长的最小值,进而求出圆心角的度数.【题目详解】设扇形的圆心角为,半径为,则由题意可得∴,当且仅当时,即时取等号,∴当扇形的圆心角为2时,扇形的周长取得最小值32.故选:B.5、C【解题分析】根据线线垂直,线线平行的判定,结合线面位置关系,即可容易求得判断.【题目详解】对于①,若,,且,显然一定有,故正确;对于②,因为,,且,则的位置关系可能平行,也可能相交,也可能是异面直线,故错;对于③,若,//且//,则一定有,故③正确;对于④,,,且,则与的位置关系不定,故④错故正确的序号有:①③.故选C【题目点拨】本题考查直线和直线的位置关系,涉及线面垂直以及面面垂直,属综合基础题.6、D【解题分析】根据题意“非有志者不能至也”可知到达“奇伟、瑰怪,非常之观”必是有志之士,故“有志”是到达“奇伟、瑰怪,非常之观”的必要条件,故选D.7、D【解题分析】求出,由三角函数定义求得,再由诱导公式得结论【题目详解】依题有,∴,∴.故选:D8、A【解题分析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【题目详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.9、B【解题分析】首先求出、,即可判断,再利用作差法判断,即可得到,再判断,即可得解;【题目详解】解:由,所以,可知,又由,有,又由,有,可得,即,故有.故选:B10、C【解题分析】根据两点间斜率公式列方程解得结果.【题目详解】斜率为直线经过,,三点,∴,解得,.选C.【题目点拨】本题考查两点间斜率公式,考查基本求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则或解不等式组即可【题目详解】由,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则或解得故答案为:12、【解题分析】根据图象求出函数的解析式,然后由已知构造不等式,解不等式即可得解.【题目详解】当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有或,解得,所以,所以服药一次治疗疾病有效时间为个小时,故答案为:13、cab【解题分析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果【题目详解】,即;,即;,即,综上可得,故答案为:.【题目点拨】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.14、(0,1]【解题分析】先作出函数f(x)图象,根据函数有3个零点,得到函数f(x)的图象与直线y=a有三个交点,结合图象即可得出结果【题目详解】由题意,作出函数的图象如下:因为函数有3个零点,所以关于x的方程f(x)﹣a=0有三个不等实根;即函数f(x)的图象与直线y=a有三个交点,由图象可得:0<a≤1故答案为:(0,1]【题目点拨】本题主要考查函数的零点,灵活运用数形结合的思想是求解的关键15、【解题分析】令,结合对数的运算即可得出结果.【题目详解】令,得,又因此,定点的坐标为故答案为:16、【解题分析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2)或.【解题分析】(1)利用赋值法计算可得,设,则,利用拆项:即可证得:当时,;(2)结合(1)的结论可证得是增函数,据此脱去f符号,原问题转化为在上恒成立,分离参数有:恒成立,结合基本不等式的结论可得实数的取值范围是或.试题解析:(1)令,得,令,得,令,得,设,则,因为,所以;(2)设,

,

因为所以,所以为增函数,所以,

即,上式等价于对任意恒成立,因为,所以上式等价于对任意恒成立,设,(时取等),所以,解得或.18、(1);(2)【解题分析】(1)首先应用向量数量积坐标公式求得,结合,求得,得到结果;(2)结合题的条件,利用同角三角函数关系式求得,结合角的范围以及(1)的结论,求得,再应用余弦和角公式求得的值,结合角的范围求得,得到结果.【题目详解】(1)因为,,所以因为,所以,即.(2)因为,,所以.因为,,所以.因为,所以,所以.因为,,所以,所以.【题目点拨】该题考查的是有关三角恒等变换的问题,涉及到的知识点有向量数量积坐标公式,同角三角函数关系式,余弦的和角公式,利用角的三角函数值的大小,结合角的范围求角的大小,属于简单题目.19、(1)70;(2)0.5.【解题分析】(1)根据题意,确定的表达式,代入运算即可;(2)要求,即,解不等式即可.【题目详解】(1)依题意,,,,由得,所以.因为,所以,又,所以.所以,所以.即时点P距离地面的高度为70m.(2)由(1)知.令,即,从而,∴.∵,∴转一圈中在点P处有0.5min的时间可以看到公园的全貌.【题目点拨】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题20、(1)为奇函数;证明见解析;(2)是在上为单调递增函数;证明见解析;(3)或.【解题分析】(1)根据已知等式,运用特殊值法和函数奇偶性的定义进行判断即可;(2)根据函数的单调性的定义,结合已知进行判断即可;(3)根据(1)(2),结合函数的单调性求出函数在的最大值,最后根据构造新函数,利用新函数的单调性进行求解即可.详解】(1)∵,令,得,∴,令可得:,∴,∴为奇函数;(2)∵是定义在上的奇函数,由题意设,则,由题意时,有,∴,∴是在上为单调递增函数;(3)∵在上为单调递增函数,∴在上的最大值为,∴要使,对所有,恒成立,只要,即恒成立;令,得,∴或.【题目点拨】本题考查了函数单调性和奇偶性的判断,考查了不等式恒成立问题,考查了数学运算能力.21、(1)或,;(2)R上单调递增,证明见解析;(3)【解题分析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论