版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市康桥书院2024届高一数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A.{−2,3} B.{−2,2,3}C.{−2,−1,0,3} D.{−2,−1,0,2,3}2.已知,,,,则,,的大小关系是()A. B.C. D.3.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④4.已知圆与圆相离,则的取值范围()A. B.C. D.5.已知一个直三棱柱的高为2,如图,其底面ABC水平放置的直观图(斜二测画法)为,其中,则此三棱柱的表面积为()A. B.C. D.6.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B.C. D.7.已知函数y=(12)x的图象与函数y=logax(a>0,A.[ 2C.[ 88.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为()A. B.C. D.9.已知的三个顶点、、及平面内一点满足,则点与的关系是()A.在的内部 B.在的外部C.是边上的一个三等分点 D.是边上的一个三等分点10.下列函数在其定义域内是增函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义域为R的函数,满足,则实数a的取值范围是______12.已知[x]表示不超过x的最大整数,定义函数f(x)=x-[x].有下列结论:①函数的图象是一条直线;②函数f(x)的值域为[0,1);③方程f(x)=有无数个解;④函数是R上的增函数.其中正确的是____.(填序号)13.定义域为R,值域为-∞,114.已知幂函数的图像过点,则的解析式为=__________15.已知直三棱柱的个顶点都在球的球面上,若,,,,则球的直径为________16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的侧面积.18.已知向量,,,求:(1),;(2)19.已知角的终边上一点的坐标是,其中,求,,的值.20.已知全集,集合,集合.(1)当时,求,;(2)若,求实数的取值范围.21.已知函数是定义在上的奇函数.(1)求实数的值,并求函数的值域;(2)判断函数的单调性(不需要说明理由),并解关于的不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】首先进行并集运算,然后计算补集即可.【题目详解】由题意可得:,则.故选:A.【题目点拨】本题主要考查并集、补集的定义与应用,属于基础题.2、B【解题分析】根据题意不妨设,利用对数的运算性质化简x,利用指数函数的单调性求出y的取值范围,利用指数幂的运算求出z,进而得出结果.【题目详解】由,不妨设,则,,,所以,故选:B3、A【解题分析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【题目详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【题目点拨】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.4、D【解题分析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法5、C【解题分析】根据斜二测画法的“三变”“三不变”可得底面平面图,然后可解.【题目详解】由斜二测画法的“三变”“三不变”可得底面平面图如图所示,其中,所以,所以此三棱柱的表面积为.故选:C6、C【解题分析】先根据图象求出,得到的解析式,再根据整体代换法求出其对称中心,赋值即可得出答案【题目详解】由图可知,,,∴,∴当时,,即令,解得当时,可得函数图象的一个对称中心为故选:C.【题目点拨】本题主要通过已知三角函数的图像求解析式考查三角函数的性质,属于中档题.利用利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析式时,求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时.7、D【解题分析】由已知中两函数的图象交于点P( 由指数函数的性质可知,若x0≥2,则0<y由于x0≥2,所以a>1且4a点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于a的不等式是解答的关键,试题比较基础,属于基础题.8、D【解题分析】由三视图可知,该正三棱柱的底面是边长为2cm的正三角形,高为2cm,根据面积公式计算可得结果.【题目详解】正三棱柱如图,有,,三棱柱的表面积为.故选:D【题目点拨】本题考查了根据三视图求表面积,考查了正三棱柱结构特征,属于基础题.9、D【解题分析】利用向量的运算法则将等式变形,得到,据三点共线的充要条件得出结论【题目详解】解:,,∴是边上的一个三等分点故选:D【题目点拨】本题考查向量的运算法则及三点共线的充要条件,属于基础题10、A【解题分析】函数在定义域内单调递减,排除B,单调区间不能用并集连接,排除CD.【题目详解】定义域为R,且在定义域上单调递增,满足题意,A正确;定义域为,在定义域内是减函数,B错误;定义域为,而在为单调递增函数,不能用并集连接,C错误;同理可知:定义域为,而在区间上单调递增,不能用并集连接,D错误.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先判断函数奇偶性,再判断函数的单调性,从而把条件不等式转化为简单不等式.【题目详解】由函数定义域为R,且,可知函数为奇函数.,令则,令则即在定义域R上单调递增,又,由此可知,当时,即,函数即为减函数;当时,即,函数即为增函数,故函数在R上的最小值为,可知函数在定义域为R上为增函数.根据以上两个性质,不等式可化为,不等式等价于即解之得或故答案为12、②③##③②【解题分析】画出的图象,即可判断四个选项的正误.【题目详解】画出函数的图象,如图所示,可以看出函数的图象不是一条直线,故A错误;函数f(x)的值域为,故②正确;方程有无数个解,③正确;函数是分段函数,且函数不是R上的增函数,故④错误.故答案为:②③13、fx【解题分析】利用基本初等函数的性质可知满足要求的函数可以是fx=1-a【题目详解】因为fx=2x的定义域为所以fx=-2x的定义域为则fx=1-2x的定义域为所以定义域为R,值域为-∞,1的一个减函数是故答案为:fx14、##【解题分析】根据幂函数的定义设函数解析式,将点的坐标代入求解即可.【题目详解】由题意知,设幂函数的解析式为为常数),则,解得,所以.故答案为:15、【解题分析】根据题设条件可以判断球心的位置,进而求解【题目详解】因为三棱柱的个顶点都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,侧棱与底面垂直,的外心是斜边的中点,上下底面的中心连线垂直底面,其中点是球心,即侧面,经过球球心,球的直径是侧面的对角线的长,因为,,,所以球的半径为:故答案为:16、①②④【解题分析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据四棱锥的体积得PA=,进而得正视图的面积;(2)过A作AE∥CD交BC于E,连接PE,确定四个侧面积面积S△PAB,S△PAD,S△PCD,S△PBC求和即可.试题解析:(1)如图所示四棱锥P-ABCD的高为PA,底面积为S=·CD=×1=∴四棱锥P-ABCD的体积V四棱锥P-ABCD=S·PA=×·PA=,∴PA=∴正视图的面积为S=×2×=.(2)如图所示,过A作AE∥CD交BC于E,连接PE.根据三视图可知,E是BC的中点,且BE=CE=1,AE=CD=1,且BC⊥AE,AB=又PA⊥平面ABCD,∴PA⊥BC,PA⊥DC,PD=,∴BC⊥面PAE,∴BC⊥PE,又DC⊥AD,∴DC⊥面PAD,∴DC⊥PD,且PA⊥平面ABCD.∴PA⊥AE,∴PE2=PA2+AE2=3.∴PE=.∴四棱锥P-ABCD的侧面积为S=S△PAB+S△PAD+S△PCD+S△PBC=··+··1+·1·+·2·=.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.18、(1),(2)【解题分析】(1)利用向量的坐标运算即得;(2)利用向量模长的坐标公式即求.【小问1详解】∵向量,,,所以,.【小问2详解】∵,,∴,所以19、答案见解析【解题分析】首先求出,再分和两种情况讨论,根据三角函数的定义计算可得;详解】解:令,,则,①当时,,,;②当时,,,;20、(1)A∪B={x|-2<x<3},;(2)(-∞,-2]【解题分析】(1)求解集合A,B根据集合交并补的定义求解即可;(2)由A∩B=A,得A⊆B,从而得,解不等式求解即可.试题解析:(1)由题得集合A={x|0<<1}={x|1<<3}当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论