版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省新课标数学高一上期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则a,b,c的大小关系是A. B.C. D.2.已知是第三象限角,则是A.第一象限角 B.第二象限角C.第一或第四象限角 D.第二或第四象限角3.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.4.下列区间中,函数单调递增的区间是()A. B.C. D.5.已知,,,则大小关系为()A. B.C. D.6.已知实数集为,集合,,则A. B.C. D.7.已知,,,则的大小关系A. B.C. D.8.已知函数,若方程有8个相异实根,则实数b的取值范围为()A. B.C. D.9.下列函数中,既是奇函数又在区间上单调递增的是()A. B.C. D.10.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量的夹角为,,则__________.12.函数f(x)=sinx-2cosx+的一个零点是,则tan=_________.13.已知函数的图象与函数及函数的图象分别交于两点,则的值为__________14.若,,则________.15.如图,在直四棱柱中,当底面ABCD满足条件___________时,有.(只需填写一种正确条件即可)16.已知偶函数在单调递减,.若,则的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合A={x|2-a⩽x⩽2+a},B={x|(1)当a=3时,求A∩B,A∪∁(2)若A∩B=∅,求实数a的取值范围18.已知函数的部分图象如图所示.(1)求函数的解析式:(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度,得到函数的图象,求在上的值域19.我们知道,声音通过空气传播时会引起区域性的压强值改变.物理学中称为“声压”.用P表示(单位:Pa(帕)):“声压级”S(单位:dB(分贝))表示声压的相对大小.已知它与“某声音的声压P与基准声压的比值的常用对数(以10为底的对数)值成正比”,即(k是比例系数).当声压级S提高60dB时,声压P会变为原来的1000倍.(1)求声压级S关于声压P的函数解析式;(2)已知两个不同的声源产生的声压P1,P2叠加后得到的总声压,而一般当声压级S<45dB时人类是可以正常的学习和休息的.现窗外同时有两个声压级为40dB的声源,在不考虑其他因素的情况下,请问这两个声源叠加后是否会干扰我们正常的学习?并说明理由.(参考数据:lg2≈0.3)20.已知,,计算:(1)(2)21.在平面直角坐标系中,设二次函数的图像与两坐标轴有三个交点,经过这三点的圆记为(1)求圆的方程;(2)若过点的直线与圆相交,所截得的弦长为4,求直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【题目详解】,因此可得.故选:D【题目点拨】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.2、D【解题分析】因为是第三象限角,所以,所以,当为偶数时,是第二象限角,当为奇数时,是第四象限角.故选:D.3、B【解题分析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【题目详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.4、A【解题分析】解不等式,利用赋值法可得出结论.【题目详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【题目点拨】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数5、B【解题分析】分别判断与0,1等的大小关系判断即可.【题目详解】因为.故.又,故.又,故.所以.故选:B【题目点拨】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.6、C【解题分析】分析:先求出,再根据集合的交集运算,即可求解结果.详解:由题意,集合,所以,又由集合,所以,故选C.点睛:本题主要考查了集合的混合运算,熟练掌握集合的交集、并集、补集的运算是解答的关键,着重考查了推理与运算能力.7、D【解题分析】利用指数函数与对数函数的单调性即可得出【题目详解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故选D【题目点拨】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题8、B【解题分析】画出的图象,根据方程有个相异的实根列不等式,由此求得的取值范围.【题目详解】画出函数的图象如图所示,由题意知,当时,;当时,.令,则原方程化为.∵方程有8个相异实根,∴关于t的方程在上有两个不等实根.令,,∴,解得.故选:B9、D【解题分析】利用是偶函数判定选项A错误;利用判定选项B错误;利用的定义域判定选项C错误;利用奇偶性的定义证明是奇函数,再通过基本函数的单调性判定的单调性,进而判定选项D正确.【题目详解】对于A:是偶函数,即选项A错误;对于B:是奇函数,但,所以在区间上不单调递增,即选项B错误;对于C:是奇函数,但的定义域为,,即选项C错误;对于D:因为,,有,即奇函数;因为在区间上单调递增,在区间上单调递增,所以在区间上单调递增,即选项D正确.故选:D.10、A【解题分析】先求出高一学生的人数,再利用抽样比,即可得到答案;【题目详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由已知得,所以,所以答案:点睛:向量数量积的求法及注意事项:(1)计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用(2)求向量模的常用方法:利用公式,将模的运算转化为向量的数量积的运算,解题时要注意向量数量积运算率的灵活应用(3)利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧12、##-0.5【解题分析】应用辅助角公式有且,由正弦型函数的性质可得,,再应用诱导公式求.【题目详解】由题设,,,令,可得,即,,所以,,则.故答案为:13、【解题分析】利用函数及函数的图象关于直线对称可得点在函数的图象上,进而可得的值【题目详解】由题意得函数及函数的图象关于直线对称,又函数的图象与函数及函数的图象分别交于两点,所以,从而点的坐标为由题意得点在函数的图象上,所以,所以故答案为4【题目点拨】解答本题的关键有两个:一是弄清函数及函数的图象关于直线对称,从而得到点也关于直线对称,进而得到,故得到点的坐标为;二是根据点在函数的图象上得到所求值.考查理解和运用能力,具有灵活性和综合性14、【解题分析】,然后可算出的值,然后可得答案.【题目详解】因为,,所以,所以,所以,,因为,所以,故答案为:15、(答案不唯一)【解题分析】直四棱柱,是在上底面的投影,当时,可得,当然底面ABCD满足的条件也就能写出来了.【题目详解】根据直四棱柱可得:∥,且,所以四边形是矩形,所以∥,同理可证:∥,当时,可得:,且底面,而底面,所以,而,从而平面,因为平面,所以,所以当满足题意.故答案为:.16、【解题分析】因为是偶函数,所以不等式,又因为在上单调递减,所以,解得.考点:本小题主要考查抽象函数的奇偶性与单调性,考查绝对值不等式的解法,熟练基础知识是关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)A∩B={x|-1⩽x⩽1或4⩽x⩽5};A∪∁RB【解题分析】(1)a=3时求出集合A,B,再根据集合的运算性质计算A∩B和A∪∁(2)根据A∩B=∅,讨论A=∅和A≠∅时a的取值范围,从而得出实数a的取值范围【题目详解】解:(1)当a=3时,A={x|2-a⩽x⩽2+a}={x|-1⩽x⩽5},B={x|x2-5x+4⩾0}={x|x⩽1A∩B={x|-1⩽x⩽1或4⩽x⩽5};又∁RA∪∁(2)A∩B=∅,当2-a>2+a,即a<0时,A=∅,满足题意;当a⩾0时,应满足2-a>12+a<4,此时得0⩽a<1综上,实数a的取值范围是(-∞,1)【题目点拨】本题考查了集合的基本运算以及不等式解法问题,注意等价变形的应用,属于中档题18、(1);(2).【解题分析】(1)由函数图象顶点求出,再根据周期求出,根据点五点中的求出,即可得函数解析式;(2)先根据平移得出,由,得出,再根据三角函数图形及性质即可求出值域【题目详解】(1)由题设图象可知,∵周期,又,∴,∵过点,∴,即,∴,即∵,∴,故函数的解析式为;(2)由题意可知,∵,∴,∴,故,∴在上的值域为【题目点拨】本题主要考查由的部分图象求解析式,以及求三角函数的值域的应用,属于中档题.19、(1)(2)不会,理由见解析【解题分析】(1)根据已知条件代入具体数据即可求出参数的值,从而确定解析式(2)将声压级代入解析式求出声压,根据求出叠加后的声压,代入解析式可求出对应的声压级,与45比较大小,判断是否会干扰学习【小问1详解】由题意得:,,所以,所以声压级S关于声压P的函数解析式为【小问2详解】不会干扰我们正常的学习,理由如下:将代入得:,所以,解得:,即所以,代入得:,所以不会干扰我们正常的学习.20、(1);(2).【解题分析】(1)先把化为,然后代入可求;(2)先把化为,然后代入可求.【题目详解】(1);(2).【题目点拨】本题主要考查齐次式的求值问题,齐次式一般转化为含有正切的式子,结合正切值可求.21、(1);(2)或【解题分析】(1)先求得圆三个交点,,由和的垂直平分线得圆心,进而得半径;(2)易得圆心到直线的距离为1,讨论直线斜率不存在和存在时,利用圆心到直线的距离求解即可.试题解析:二次函数的图像与两坐标轴轴的三个交点分别记为(1)线段的垂直平分线为,线段的垂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【八年级下册历史】期末综合测试卷
- 2024年福建省宁德市蕉城区九都镇招聘社区工作者考前自测高频考点模拟试题(共500题)含答案
- 通关02 中国近现代史选择题专练(解析版)
- 江苏省滨淮2025届中考四模生物试题含解析
- 2022-2023学年山东省日照市高一上学期期末考试地理试题(解析版)
- 锗硅合金单晶项目建议书写作参考范文
- 2025技术入股合同范文
- 2025办公室装修合同书版
- 2024年度天津市公共营养师之三级营养师考前冲刺试卷A卷含答案
- 2024年度四川省公共营养师之四级营养师能力提升试卷B卷附答案
- 2024-2025学年一年级数学上册期末乐考非纸笔测试题(二 )(苏教版2024秋)
- 2024秋期国家开放大学专科《高等数学基础》一平台在线形考(形考任务一至四)试题及答案
- HSE应急预案(完整版)
- 2024-2024年江苏省普通高中学业水平测试物理试卷(含答案)
- 如何高效学习学习通超星课后章节答案期末考试题库2023年
- HCCDP 云迁移认证理论题库
- 山西事业单位专业技术职务聘任管理
- 110kV及以上电力电缆敷设施工方法要点
- 国家开放大学电大专科《刑法学(1)》期末题库及答案
- 消防安全承诺书[新].doc
- 台大公开课--《红楼梦》笔记剖析
评论
0/150
提交评论