版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济南二中高一数学第一学期期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(-∞,-1) B.(-∞,1)C.(-1,0) D.[-1,0)2.如图,,下列等式中成立的是()A. B.C. D.3.中国扇文化有着深厚的文化底蕴,小小的折扇传承千年的制扇工艺与书画艺术,折扇可以看作是从一个圆面中剪下的扇形制作而成,设折扇的面积为,圆面中剩余部分的面积为,当时,折扇的圆心角的弧度数为()A. B.C. D.4.有三个函数:①,②,③,其中图像是中心对称图形的函数共有().A.0个 B.1个C.2个 D.3个5.已知,则的大小关系为A. B.C. D.6.两圆和的位置关系是A.内切 B.外离C.外切 D.相交7.已知向量,若与垂直,则的值等于A. B.C.6 D.28.函数的最小正周期为A. B.C.2 D.49.已知是方程的两根,且,则的值为A. B.C.或 D.10.函数fxA.2π B.-πC.π D.π二、填空题:本大题共6小题,每小题5分,共30分。11.在区间上随机取一个实数,则事件发生的概率为_________.12.在△ABC中,点满足,过点的直线与,所在直线分别交于点,,若,,,则的最小值为___________.13.已知函数f(x)=(a>0,a≠1)是偶函数,则a=_________,则f(x)的最大值为________.14.A是锐二面角α-l-β的α内一点,AB⊥β于点B,AB=,A到l的距离为2,则二面角α-l-β的平面角大小为________.15.已知函数的零点为,不等式的最小整数解为,则__________16.已知函数是偶函数,则实数的值是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:.(2)化简:.18.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=,(1)求φ;(2)求函数y=f(x)的单调增区间19.已知函数为奇函数.(1)求实数的值,并用定义证明是上的增函数;(2)若关于的不等式的解集非空,求实数的取值范围.20.如图,射线、分别与轴正半轴成和角,过点作直线分别交、于、两点,当的中点恰好落在直线上时,求直线的方程21.如图所示,正方形边长为分别是边上的动点.(1)当时,设,将的面积用表示,并求出面积的最大值;(2)当周长为4时,设,.用表示,由此研究的大小是否为定值,并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】当x>0时,f(x)有一个零点,故当x≤0时只有一个实根,变量分离后进行计算可得答案.【题目详解】当x>0时,f(x)=3x-1有一个零点x=.因此当x≤0时,f(x)=ex+a=0只有一个实根,∴a=-ex(x≤0),函数y=-ex单调递减,则-1≤a<0.故选:D【题目点拨】本题考查由函数零点个数确定参数的取值,考查指数函数的性质,属于基础题.2、B【解题分析】本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案【题目详解】因为,所以,所以,即,故选B【题目点拨】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题3、C【解题分析】设折扇的圆心角为,则圆面中剩余部分的圆心角为,根据扇形的面积公式计算可得;【题目详解】解:设折扇的圆心角为,则圆面中剩余部分的圆心角为,圆的半径为,依题意可得,解得;故选:C4、C【解题分析】根据反比例函数的对称性,图象变换,然后结合中心对称图形的定义判断【题目详解】,显然函数的图象是中心对称图形,对称中心是,而的图形是由的图象向左平行3个单位,再向下平移1个单位得到的,对称中心是,由得,于是不是中心对称图形,,中间是一条线段,它关于点对称,因此有两个中心对称图形故选:C5、D【解题分析】,且,,,故选D.6、D【解题分析】根据两圆方程求解出圆心和半径,从而得到圆心距;根据得到两圆相交.【题目详解】由题意可得两圆方程为:和则两圆圆心分别为:和;半径分别为:和则圆心距:则两圆相交本题正确选项:【题目点拨】本题考查圆与圆的位置关系,关键是判断出圆心距和两圆半径之间的关系,属于基础题.7、B【解题分析】,所以,则,故选B8、C【解题分析】分析:根据正切函数的周期求解即可详解:由题意得函数的最小正周期为故选C点睛:本题考查函数的最小正周期,解答此类问题时根据公式求解即可9、A【解题分析】∵是方程的两根,∴,∴又,∴,∵,∴又,∴,∴.选A点睛:解决三角恒等变换中给值求角问题的注意点解决“给值求角”问题时,解题的关键也是变角,即把所求角用含已知角的式子表示,然后求出适合的一个三角函数值.再根据所给的条件确定所求角的范围,最后结合该范围求得角,有时为了解题需要压缩角的取值范围10、C【解题分析】由题意得ω=2,再代入三角函数的周期公式T=【题目详解】根据三角函数的周期公式T=2π函数fx=cos故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型12、3【解题分析】先利用条件找到,然后对减元,化为,利用基本不等式求最小值.【题目详解】,,,三点共线,.则当且仅当,即时等号成立.故答案为:3.【题目点拨】(1)在向量运算中:①构造向量加、减法的三角形法则和平行四边形法则;②树立“基底”意识,利用基向量进行线性运算;(2)基本不等式求最值要注意应用条件:“一正二定三相等”.13、①.②.【解题分析】根据偶函数f(-x)=f(x)即可求a值;分离常数,根据单调性即可求最大值,或利用基本不等式求最值.【题目详解】是偶函数,,则,则,即,则,则,则,当且仅当,即,则时取等号,即的最大值为,故答案为:,14、【解题分析】如图,过点B作与,连,则有平面,从而得,所以即为二面角的平面角在中,,所以,所以锐角即二面角的平面角的大小为答案:点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角,然后通过解三角形的方法求得角,解题时要注意所求角的范围15、8【解题分析】利用单调性和零点存在定理可知,由此确定的范围,进而得到.【题目详解】函数为上的增函数,,,函数的零点满足,,的最小整数解故答案为:.16、1【解题分析】函数是偶函数,,即,解得,故答案为.【方法点睛】本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据分数指数幂及对数的运算法则计算可得;(2)利用诱导公式及特殊值的三角函数值计算可得;【题目详解】解:(1)(2)18、(1)φ=-π;(2)单调增区间为.【解题分析】(1)∵x=是函数y=f(x)的图象的对称轴,∴sin(2×+φ)=±1,∴+φ=kπ+,k∈Z.∵-π<φ<0,∴φ=-.(2)y=sin(2x-)由2kπ-≤2x-≤2kπ+,k∈Z.得kπ+≤x≤kπ+,k∈Z.所以函数y=sin(2x-)的单调增区间为[kπ+,kπ+],k∈Z19、(1),证明见解析;(2).【解题分析】(1)由函数奇偶性的性质,求得,再利用函数的单调性的定义与判定方法,即可是上的增函数;(2)由函数为奇函数,且在上单调递增,把不等式转化为在上有解,结合二次函数的性质,即可求解.【题目详解】(1)因为定义在上的奇函数,可得,都有,令,可得,解得,所以,此时满足,所以函数是奇函数,所以.任取,且,则,因为,即,所以是上的增函数.(2)因为为奇函数,且的解集非空,可得的解集非空,又因为在上单调递增,所以的解集非空,即在上有解,则满足,解得,所以实数的取值范围..20、【解题分析】先求出、所在的直线方程,根据直线方程分别设A、B点坐标,进而求出的中点C的坐标,利用点C在直线上以及A、B、P三点共线列关系式解出B点坐标,从而求出直线AB的斜率,然后代入点斜式方程化简即可.【题目详解】解:由题意可得,,所以直线,设,,所以的中点由点在上,且、、三点共线得解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度安徽省租赁房屋租赁合同解除协议2篇
- 二零二五版多功能会议场地租赁服务合同模板3篇
- 二零二五版废渣运输合同环保评估与整改方案3篇
- 二零二五版公积金贷款个人公积金提取借款合同3篇
- 二零二五版工业自动化生产线改造项目承包合同范本3篇
- 二零二五版房屋屋顶光伏发电系统检测维修合同范本3篇
- 二零二五年度智慧能源管理系统集成合同2篇
- 二零二五年机床设备采购与客户项目整体解决方案合同3篇
- 二零二五年抖音广告创意策划与投放服务合同3篇
- 二零二五年新型环保建材生产与建筑垃圾回收处理合同3篇
- 常用静脉药物溶媒的选择
- 2023-2024学年度人教版一年级语文上册寒假作业
- 当代西方文学理论知到智慧树章节测试课后答案2024年秋武汉科技大学
- 2024年预制混凝土制品购销协议3篇
- 2024-2030年中国高端私人会所市场竞争格局及投资经营管理分析报告
- GA/T 1003-2024银行自助服务亭技术规范
- 《消防设备操作使用》培训
- 新交际英语(2024)一年级上册Unit 1~6全册教案
- 2024年度跨境电商平台运营与孵化合同
- 2024年电动汽车充电消费者研究报告-2024-11-新能源
- 湖北省黄冈高级中学2025届物理高一第一学期期末考试试题含解析
评论
0/150
提交评论