版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省华安一中2024届高一上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,对于满足的一切值都有,则实数的取值范围为A B.C. D.2.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减3.设,且,则下列不等式一定成立的是()A. B.C. D.4.正方形的边长为,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.C. D.5.已知,则为()A. B.2C.3 D.或36.下列关系中,正确的是()A. B.C D.7.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.48.已知集合,则()A. B.C. D.9.已知,均为正实数,且,则的最小值为A.20 B.24C.28 D.3210.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点为,,,则该三角形的欧拉线方程为().注:重心坐标公式为横坐标:;纵坐标:A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____12.已知函数的定义域为,当时,,若,则的解集为______13.______________.14.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.15.计算:__________,__________16.下列说法正确的序号是__________________.(写出所有正确的序号)①正切函数在定义域内是增函数;②已知函数的最小正周期为,将的图象向右平移个单位长度,所得图象关于轴对称,则的一个值可以是;③若,则三点共线;④函数的最小值为;⑤函数在上是增函数,则的取值范围是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线,.(1)若,求的值;(2)若,求的值.18.计算(1);(2).19.已知集合,,.(1)求,;(2)若,求实数a的取值范围.20.如图,三棱柱中,侧棱垂直底面,,,点是棱的中点(1)证明:平面平面;(2)求三棱锥的体积21.计算下列各式的值(1)(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】用分离参数法转化为求函数的最大值得参数范围【题目详解】满足的一切值,都有恒成立,,对满足的一切值恒成立,,,时等号成立,所以实数的取值范围为,故选:D.2、A【解题分析】由可知是奇函数,排除,,且,由可知错误,故选3、D【解题分析】利用特殊值及不等式的性质判断可得;【题目详解】解:因为,对于A,若,,满足,但是,故A错误;对于B:当时,,故B错误;对于C:当时没有意义,故C错误;对于D:因为,所以,故D正确;故选:D4、B【解题分析】根据斜二测画法画直观图的性质,即平行于轴的线段长度不变,平行于轴的线段的长度减半,结合图形求得原图形的各边长,可得周长【题目详解】因为直观图正方形的边长为1cm,所以,所以原图形为平行四边形OABC,其中,,,所以原图形的周长5、C【解题分析】根据分段函数的定义域求解.【题目详解】因为,所以故选:C6、B【解题分析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【题目详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B7、C【解题分析】将圆的方程化为标准方程即可得圆的半径.【题目详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【题目点拨】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.8、D【解题分析】由交集的定义求解即可【题目详解】,由题意,作数轴如图:故,故选:D.9、A【解题分析】分析:由已知条件构造基本不等式模型即可得出.详解:均为正实数,且,则当且仅当时取等号.的最小值为20.故选A.点睛:本题考查了基本不等式性质,“一正、二定、三相等”.10、D【解题分析】由重心坐标公式得重心的坐标,根据垂直平分线的性质设出外心的坐标为,再由求出,然后求出欧拉线的斜率,点斜式就可求得其方程.【题目详解】设的重点为,外心为,则由重心坐标公式得,并设的坐标为,解得,即欧拉方程为:,即:故选:D【题目点拨】本题考查直线方程,两点之间的距离公式,三角形的重心、垂心、外心的性质,考查了理解辨析能力及运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、{﹣2,4,6}【解题分析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【题目详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【题目点拨】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.12、##【解题分析】构造,可得在上单调递减.由,转化为,利用单调性可得答案【题目详解】由,得,令,则,又,所以在上单调递减由,得,因为,所以,所以,得故答案为:.13、2【解题分析】由对数的运算法则直接求解.【题目详解】故答案为:214、【解题分析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【题目详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【题目点拨】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.15、①.0②.-2【解题分析】答案:0,16、③⑤【解题分析】对每一个命题逐一判断得解.【题目详解】①正切函数在内是增函数,所以该命题是错误的;②因为函数的最小正周期为,所以w=2,所以将的图象向右平移个单位长度得到,所得图象关于轴对称,所以,所以的一个值不可以是,所以该命题是错误的;③若,因为,所以三点共线,所以该命题是正确的;④函数=,所以sinx=-1时,y最小为-1,所以该命题是错误的;⑤函数在上是增函数,则,所以的取值范围是.所以该命题是正确的.故答案为③⑤【题目点拨】本题主要考查正切函数的单调性,考查正弦型函数的图像和性质,考查含sinx的二次型函数的最值的计算,考查对数型函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)利用两条直线垂直的条件,结合两条直线的方程可得1×(m﹣2)+m×3=0,由此求得m的值(2)利用两直线平行的条件,结合两条直线的方程可得,由此求得得m的值【题目详解】(1)∵直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,由l1⊥l2,可得1×(m﹣2)+m×3=0,解得(2)由题意可知m不等于0,由l1∥l2可得,解得m=﹣1【题目点拨】本题主要考查两直线平行、垂直的条件,属于基础题18、(1)2(2)【解题分析】(1)根据对数计算公式,即可求得答案;(2)将化简为,即可求得答案.【小问1详解】【小问2详解】19、(1),(2)【解题分析】(1)由交集和并集运算直接求解即可.(2)由,则【题目详解】(1)由集合,则,(2)若,则,所以20、(1)证明见解析;(2)【解题分析】(1)由题意得,,即可得到平面,从而得到⊥,再根据,得到,证得平面,即可得证;(2)首先求出,利用勾股定理求出,即可求出,再根据锥体的体积公式计算可得【题目详解】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版八年级数学上册13.3.1《等腰三角形(2)》听评课记录
- 苏教版一年级数学上册口算练习题三
- 法人股东对外-股权转让协议书范本
- 绿地租赁合同范本
- 资产委托经营管理合同范本
- 汽车租赁业务合作协议书范本
- 宿迁房屋租赁合同范本
- 人力资源战略合作框架协议书范本
- 2025年度年度单位向单位教育项目借款合同
- 医疗服务协议书范本
- 《工作场所安全使用化学品规定》
- 装饰图案设计-装饰图案的形式课件
- 2022年菏泽医学专科学校单招综合素质考试笔试试题及答案解析
- 护理学基础教案导尿术catheterization
- ICU护理工作流程
- 广东版高中信息技术教案(全套)
- 市政工程设施养护维修估算指标
- 短视频:策划+拍摄+制作+运营课件(完整版)
- 石家庄铁道大学四方学院毕业设计46
- 分布式光伏屋顶调查表
- 部编版五年级语文下册第四单元课时作业本有答案
评论
0/150
提交评论