浙江省绍兴市柯桥区柯桥区教师发展中心2024届高一上数学期末复习检测试题含解析_第1页
浙江省绍兴市柯桥区柯桥区教师发展中心2024届高一上数学期末复习检测试题含解析_第2页
浙江省绍兴市柯桥区柯桥区教师发展中心2024届高一上数学期末复习检测试题含解析_第3页
浙江省绍兴市柯桥区柯桥区教师发展中心2024届高一上数学期末复习检测试题含解析_第4页
浙江省绍兴市柯桥区柯桥区教师发展中心2024届高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市柯桥区柯桥区教师发展中心2024届高一上数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知命题,,则p的否定是()A., B.,C., D.,2.已知关于的方程的两个实数根分别是、,若,则的取值范围为()A. B.C. D.3.已知函数则函数的零点个数为.A. B.C. D.4.已知二次函数在区间(2,3)内是单调函数,则实数的取值范围是()A.或 B.C.或 D.5.若,则错误的是A. B.C. D.6.设集合则().A. B.C. D.7.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④8.若,,若,则a的取值集合为()A. B.C. D.9.如图,在正方体中,与平面所成角的余弦值是A. B.C. D.10.福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水的限制,是迄今为止“我国少有、福建最佳”的天然良港.如图,是港区某个泊位一天中6时到18时的水深变化曲线近似满足函数,据此可知,这段时间水深(单位:m)的最大值为()A.5 B.6C.8 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递减区间为__12.已知函数,则满足的实数的取值范围是__13.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________14.函数的定义域是_____________15.若扇形的面积为9,圆心角为2弧度,则该扇形的弧长为______16.已知点,直线与线段相交,则实数的取值范围是____;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知幂函数在上单调递增,函数(1)求实数m的值;(2)当时,记的值域分别为集合,若,求实数k的取值范围18.如图,三棱柱中,侧棱垂直底面,,,点是棱的中点(1)证明:平面平面;(2)求三棱锥的体积19.某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量(件)与售价(元/件)之间满足一次函数关系,部分对应数据如下表所示.(元/件)20212223……3940(件)440420400380……6040(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?20.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程21.已知的顶点,边上的高所在直线的方程为,边上中线所在的直线方程为(1)求直线的方程;(2)求点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由否定的定义写出即可.【题目详解】p的否定是,.故选:D2、D【解题分析】利用韦达定理结合对数的运算性质可求得的值,再由可求得实数的取值范围.【题目详解】由题意,知,因为,所以.又有两个实根、,所以,解得.故选:D.3、B【解题分析】令,得,令,由,得或,作出函数的图象,结合函数的图象,即可求解【题目详解】由题意,令,得,令,由,得或,作出函数的图象,如图所示,结合函数的图象可知,有个解,有个解,故的零点个数为,故选B.【题目点拨】本题主要考查了函数的零点问题,其中令,由,得到或,作出函数的图象,结合函数的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题4、A【解题分析】根据开口方向和对称轴及二次函数f(x)=x2-2ax+1的单调区间求参数的取值范围即可.【题目详解】根据题意二次函数f(x)=x2-2ax+1开口向上,单调递增区间为,单调减区间,因此当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调增函数时a≤2,当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调减函数时a≥3,综上可得a≤2或a≥3.故选:A.5、D【解题分析】对于,由,则,故正确;对于,,故正确;对于,,故正确;对于,,故错误故选D6、D【解题分析】利用求集合交集的方法求解.【题目详解】因为所以.故选:D.【题目点拨】本题主要考查集合的交集运算,明确集合交集的含义是求解的关键,侧重考查数学运算的核心素养.7、D【解题分析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【题目详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D8、B【解题分析】或,分类求解,根据可求得的取值集合【题目详解】或,,,或或,解得或,综上,故选:9、D【解题分析】连接,设正方体棱长为1.∵平面,∴∠为与平面所成角.∴故选D10、C【解题分析】从图象中的最小值入手,求出,进而求出函数的最大值,即为答案.【题目详解】从图象可以看出,函数最小值为-2,即当时,函数取得最小值,即,解得:,所以,当时,函数取得最大值,,这段时间水深(单位:m)的最大值为8m.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由根式内部的代数式大于等于0,求得原函数的定义域,再求出内层函数的减区间,即可得到原函数的减区间【题目详解】由,得或,令,该函数在上单调递减,而y=是定义域内的增函数,∴函数的单调递减区间为故答案为:12、【解题分析】分别对,分别大于1,等于1,小于1的讨论,即可.【题目详解】对,分别大于1,等于1,小于1讨论,当,解得当,不存在,当时,,解得,故x的范围为【题目点拨】本道题考查了分段函数问题,分类讨论,即可,难度中等13、【解题分析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【题目详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:14、.【解题分析】由题意,要使函数有意义,则,解得:且.即函数定义域为.考点:函数的定义域.15、6【解题分析】先由已知求出半径,从而可求出弧长【题目详解】设扇形所在圆的半径为,因为扇形的面积为9,圆心角为2弧度,所以,得,所以该扇形的弧长为,故答案为:616、【解题分析】由直线,即,此时直线恒过点,则直线的斜率,直线的斜率,若直线与线段相交,则,即,所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由幂函数定义列出方程,求出m的值,检验函数单调性,舍去不合题意的m的值;(2)在第一问的基础上,由函数单调性得到集合,由并集结果得到,从而得到不等式组,求出k的取值范围.【小问1详解】依题意得:,∴或当时,在上单调递减,与题设矛盾,舍去当时,上单调递增,符合要求,故.【小问2详解】由(1)可知,当时,函数和均单调递增∴集合,又∵,∴,∴,∴,∴实数k的取值范围是.18、(1)证明见解析;(2)【解题分析】(1)由题意得,,即可得到平面,从而得到⊥,再根据,得到,证得平面,即可得证;(2)首先求出,利用勾股定理求出,即可求出,再根据锥体的体积公式计算可得【题目详解】解:(1)证明:由题设知,,,平面,所以平面,又因为平面,所以因为,所以,即因为,平面,所以平面,又因为平面,所以平面平面(2)由,得,所以,所以,所以的面积,所以19、(1)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元【解题分析】(1)设,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与的关系,由二次函数的性质得最大值【小问1详解】设,不妨选择两组数据,代入,可得解得∴一次函数的解析式为【小问2详解】设利润为元,由题意可得,∴当时,,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元20、(1);(2)【解题分析】(1)先求出与的交点,再利用两直线平行斜率相等求直线l(2)利用两直线垂直斜率乘积等于-1求直线l【题目详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论