




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省宜宾市第三中学高一上数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数是指数函数,则的值是A.4 B.1或3C.3 D.12.已知“”是“”的充分不必要条件,则k的取值范围为()A. B.C. D.3.已知扇形的弧长是,面积是,则扇形的圆心角的弧度数是()A. B.C. D.或4.已知函数是定义域为的奇函数,且,当时,,则()A. B.C. D.5.计算器是如何计算,,,,等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如,,,其中.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的和的值也就越精确.运用上述思想,可得到的近似值为()A.0.50 B.0.52C.0.54 D.0.566.三个数20.3,0.32,log0.32的大小顺序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.37.下列函数中,是偶函数且值域为的是()A. B.C. D.8.已知点位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限9.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若点在过两点的直线上,则实数的值是________.12.已知,,,则________13.函数(且)的图象过定点___________.14.若函数满足:对任意实数,有且,当时,,则时,________15.请写出一个同时满足下列两个条件的函数:____________.(1),若则(2)16.若正数,满足,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点及圆.(1)若直线过点且与圆心的距离为1,求直线的方程;(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由18.化简求值:(1)已知都为锐角,,求的值;(2).19.已知M(1,﹣1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQ⊥MN,PN∥MQ.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.20.已知函数.(1)判断奇偶性;(2)当时,判断的单调性并证明;(3)在(2)的条件下,若实数满足,求的取值范围.21.设函数.(1)求的单调增区间;(2)求在上的最大值与最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由题意,解得.故选C考点:指数函数的概念2、C【解题分析】根据“”是“”的充分不必要条件,可知是解集的真子集,然后根据真子集关系求解出的取值范围.【题目详解】因为,所以或,所以解集为,又因为“”是“”的充分不必要条件,所以是的真子集,所以,故选:C.【题目点拨】结论点睛:一般可根据如下规则判断充分、必要条件:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分也不必要条件,则对应集合与对应集合互不包含.3、C【解题分析】根据扇形面积公式,求出扇形的半径,再由弧长公式,即可求出结论.【题目详解】因为扇形的弧长为4,面积为2,设扇形的半径为,则,解得,则扇形的圆心角的弧度数为.故选:C.【题目点拨】本题考查扇形面积和弧长公式应用,属于基础题.4、A【解题分析】由奇偶性结合得出,再结合解析式得出答案.【题目详解】由函数是定义域为的奇函数,且,,而,则故选:A5、C【解题分析】根据新定义,直接计算取近似值即可.【题目详解】由题意,故选:C6、D【解题分析】由已知得:,,,所以.故选D.考点:指数函数和对数函数的图像和性质.7、D【解题分析】分别判断每个选项函数的奇偶性和值域即可.【题目详解】对A,,即值域为,故A错误;对B,的定义域为,定义域不关于原点对称,不是偶函数,故B错误;对C,的定义域为,定义域不关于原点对称,不是偶函数,故C错误;对D,的定义域为,,故是偶函数,且,即值域为,故D正确.故选:D.8、C【解题分析】通过点所在象限,判断三角函数的符号,推出角所在的象限.【题目详解】点位于第二象限,可得,,可得,,角所在的象限是第三象限故选C.【题目点拨】本题考查三角函数的符号的判断,是基础题.第一象限所有三角函数值均为正,第二象限正弦为正,其它为负,第三象限正切为正,其它为负,第四象限余弦为正,其它为负.9、A【解题分析】由菱形和平行四边形的定义可判断.【题目详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.10、D【解题分析】当在点的位置时,面积为,故排除选项.当在上运动时,面积为,轨迹为直线,故选选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先由直线过两点,求出直线方程,再利用点在直线上,求出的值.【题目详解】由直线过两点,得,则直线方程为:,得,即,又点在直线上,得,得.故答案为:【题目点拨】本题考查了已知两点求直线的方程,直线方程的应用,属于容易题.12、【解题分析】由诱导公式将化为,再由,根据两角差的正弦公式,即可求出结果.【题目详解】因,所以,,又,,所以,,所以,,所以.故答案为【题目点拨】本题主要考查简单的三角恒等变换,熟记两角差的正弦公式以及诱导公式,即可求解,属于常考题型.13、【解题分析】由可得图像所过的定点.【题目详解】当时,,故的图像过定点.填.【题目点拨】所谓含参数的函数的图像过定点,是指若是与参数无关的常数,则函数的图像必过.我们也可以根据图像的平移把复杂函数的图像所过的定点归结为常见函数的图像所过的定点(两个定点之间有平移关系).14、【解题分析】由,可知.所以函数是周期为4的周期函数.,时,..对任意实数,有,可知函数关于点(1,0)中心对称,所以,又.所以.综上可知,时,.故答案为.点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为(3)若,则函数的周期为;(4)若,则函数的周期为.15、,答案不唯一【解题分析】由条件(1),若则.可知函数为R上增函数;由条件(2).可知函数可能为指数型函数.【题目详解】令,则为R上增函数,满足条件(1).又,故即成立.故答案为:,(,等均满足题意)16、108【解题分析】设,反解,结合指数运算和对数运算,即可求得结果.【题目详解】可设,则,,;所以.故答案为:108.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2);(3)不存在.【解题分析】(1)设出直线方程,结合点到直线距离公式,计算参数,即可.(2)证明得到点P为MN的中点,建立圆方程,即可.(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可【题目详解】(1)直线斜率存在时,设直线的斜率为,则方程为,即.又圆的圆心为,半径,由,解得.所以直线方程为,即.当的斜率不存在时,的方程为,经验证也满足条件即直线的方程为或.(2)由于,而弦心距,所以.所以恰为的中点故以为直径的圆的方程为.(3)把直线代入圆的方程,消去,整理得.由于直线交圆于两点,故,即,解得.则实数的取值范围是设符合条件的实数存在,由于垂直平分弦,故圆心必在上.所以的斜率,而,所以.由于,故不存在实数,使得过点的直线垂直平分弦.【题目点拨】考查了点到直线距离公式,考查了圆方程计算方法,考查了直线斜率计算方法,难度偏难18、(1),(2)0.【解题分析】(1)先计算出,的值,然后根据角的配凑以及两角差的余弦公式求解出的值;(2)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式【小问1详解】因为,都为锐角,,,所以,,则【小问2详解】原式19、(1)(2)【解题分析】(1)设Q(x,y),根据PQ⊥MN得出,然后由PN∥MQ得出,解方程组即可求出Q的坐标;(2)设Q(x,0)由∠NQP=∠NPQ得出kNQ=﹣kNP,解方程求出Q的坐标,然后即可得出结果.【小问1详解】设Q(x,y),由已知得kMN=3,又PQ⊥MN,可得kMN×kPQ=﹣1即(x≠3)①由已知得kPN=﹣2,又PN∥MQ,可得kPN=kMQ,即(x≠1)②联立①②求解得x=0,y=1,∴Q(0,1);【小问2详解】设Q(x,0),∵∠NQP=∠NPQ,∴kNQ=﹣kNP,又∵kNQ,kNP=﹣2,∴2解得x=1,∴Q(1,0),又∵M(1,﹣1),∴MQ⊥x轴,故直线MQ的倾斜角为90°.20、(1)奇函数(2)增函数,证明见解析(3)【解题分析】(1)求出函数的定义域,再判断的关系,即可得出结论;(2)任取且,利用作差法比较的大小即可得出结论;(3)根据函数的单调性列出不等式,即可得解,注意函数的定义域.【小问1详解】解:函数的定义域为,因为,所以函数是奇函数;小问2详解】解:函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届广东省普宁市华侨中学高三第二次调研化学试卷含解析
- 河南许昌普高2025届高三第五次模拟考试化学试卷含解析
- 2025届广西贵港市覃塘高级中学高三下学期联合考试化学试题含解析
- 2025年LED超大屏幕显示器项目建议书
- 湖北省鄂东南示范高中教改联盟2025年高三下学期联合考试化学试题含解析
- 护理小讲课:高血压
- 中考数学高频考点专项练习:专题15 考点35 与圆有关的计算 (1)及答案
- 2025届陕西省商洛市丹凤中学高考考前模拟化学试题含解析
- 三效定格管理体系
- 打造多彩现场教学课件
- 超星尔雅学习通《红色经典影片与近现代中国发展》章节测试答案
- 智能药筐介绍
- 小学道德与法治-圆明园的诉说教学设计学情分析教材分析课后反思
- 复式条形统计图22
- GB/T 622-2006化学试剂盐酸
- 周三多管理学精华重点
- GB/T 41097-2021非公路用旅游观光车辆使用管理
- 常见急救知识培训课件
- 分离工程试习题库-叶庆国
- 《了凡四训》课件
- Aspen-中文培训资料课件
评论
0/150
提交评论