函数的平均变化率2_第1页
函数的平均变化率2_第2页
函数的平均变化率2_第3页
函数的平均变化率2_第4页
函数的平均变化率2_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的平均变化率教学目标:(1)通过生活实例使学生理解函数增量、函数的平均变化率的概念;(2)掌握求简单函数平均变化率的方法,会求函数的平均变化率;

(3)理解函数的平均变化率的含义,引出函数的瞬时变化率概念,简单应用,为下一节导数概念的学习打好基础。

假设下图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A是出发点,H是山顶.爬山路线用函数y=f(x)表示.自变量x表示某旅游者的水平位置,函数值y=f(x)表示此时旅游者所在的高度.设点A的坐标为(x0,y0),点B的坐标为(x1,y1).问题1:若旅游者从点A爬到点B,假设这段山路时平直的自变量x和函数值y的改变量分别是多少?提示:自变量x的改变量为x1-x0,记作Δx,函数值的改变量为y1-y0,记作Δy=y1-y0.问题2:Δy的大小能否判断山坡陡峭程度?提示:不能.问题3:怎样用数量刻画弯曲山路的陡峭程度呢?提示:不相同.f(x0+Δx)-f(x0)平均变化率曲线陡峭程度数形变量变化的快慢

建构数学例1、已知函数f(x)=x2,分别计算f(x)在下列区间上的平均变化率:

(1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].

432.12.001(5)[0.9,1];(6)[0.99,1];(7)[0.999,1].变题:1.991.91.999课后思考:为什么趋近于2呢?2的几何意义是什么?数学应用xyp13例2.求函数y=x2在区间[x0,x0+△x](或[x0+△x,x0])的平均变化率。解:函数y=x2在区间[x0,x0+△x](或[x0+△x,x0])的平均变化率为

由上式可以看出,当x0取定值时,△x取不同的值,函数的平均变化率不同,当△x取定值,x0取不同的值时,该函数的平均变化率也不一样。例如,x0取正值,并不断增大时,该函数的平均变化率也不断地增大,曲线变得越来越陡峭。已知函数f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为 (

)A.0.40

B.0.41C.0.43 D.0.44解析:Δy=f(2+Δx)-f(2)=f(2.1)-f(2)=2.12-22=0.41.答案:B例2.求函数在区间[x0,x0+△x](或[x0+△x,x0])的平均变化率(x0≠0,且x0+△x≠0).解:函数的平均变化率为

3-△x变式:已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+△x,-2+△y),则

.图1图2例3

:甲乙二人跑步路程与时间的关系以及百米赛跑路程和时间的关系分别如图(1)(2)所示,(1)甲乙二人哪一个跑得快?(2)甲乙二人百米赛跑,快到终点时,谁跑得比较快?1.计算函数f(x)=x2在区间[1,1+Δx](Δx>0)的平均变化率,其中Δx的值为:(1)2;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论