浙江省鄞州中学2024届数学高一上期末联考模拟试题含解析_第1页
浙江省鄞州中学2024届数学高一上期末联考模拟试题含解析_第2页
浙江省鄞州中学2024届数学高一上期末联考模拟试题含解析_第3页
浙江省鄞州中学2024届数学高一上期末联考模拟试题含解析_第4页
浙江省鄞州中学2024届数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省鄞州中学2024届数学高一上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数在区间上的图象的大致形状是()A. B.C. D.2.若方程表示圆,则实数的取值范围是A. B.C. D.3.设平面向量满足,且,则的最大值为A.2 B.3C. D.4.在如图所示中,二次函数与指数函数的图象只可为A. B.C. D.5.若点在角的终边上,则的值为A. B.C. D.6.已知,,,则a,b,c大小关系为()A. B.C. D.7.表示不超过x的最大整数,例如,,,.若是函数的零点,则()A.1 B.2C.3 D.48.30°的弧度数为()A. B.C. D.9.已知全集,,则()A. B.C. D.10.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值二、填空题:本大题共6小题,每小题5分,共30分。11.若,,则______12.从含有两件正品和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,取出的两件产品都是正品的概率为__________.13.若圆心角为的扇形的弧长为,则该扇形面积为__________.14.已知为角终边上一点,且,则______15.______________.16.化简求值(1)化简(2)已知:,求值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)存在,使得不等式成立,求实数k的取值范围;(2)方程有负实数解,求实数k的取值范围.18.已知函数f(x)=x2-ax+2(1)若f(x)≤-4的解集为[2,b],求实数a,b的值;(2)当时,若关于x的不等式f(x)≥1-x2恒成立,求实数a的取值范围19.某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?20.已知直线:与圆:交于,两点.(1)求的取值范围;(2)若,求.21.已知函数,当时,取得最小值(1)求a的值;(2)若函数有4个零点,求t的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】先由函数的奇偶性确定部分选项,再通过特殊值得到答案.【题目详解】因为,所以在区间上是偶函数,故排除B,D,又,故选:A【题目点拨】本题主要考查函数的性质确定函数的图象,属于基础题.2、A【解题分析】由二元二次方程表示圆的充要条件可知:,解得,故选A考点:圆的一般方程3、C【解题分析】设,∵,且,∴∵,当且仅当与共线同向时等号成立,∴的最大值为.选C点睛:由于向量,且,因此向量确定,这是解题的基础也是关键.然后在此基础上根据向量模的三角不等式可得的范围,解题时要注意等号成立的条件4、C【解题分析】指数函数可知,同号且不相等,再根据二次函数常数项为零经过原点即可得出结论【题目详解】根据指数函数可知,同号且不相等,则二次函数的对称轴在轴左侧,又过坐标原点,故选:C【题目点拨】本题主要考查二次函数与指数函数的图象与性质,属于基础题5、A【解题分析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案【题目详解】由题意,点在角的终边上,即,则,由三角函数的定义,可得故选A【题目点拨】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.6、B【解题分析】利用对数函数的单调性证明即得解.【题目详解】解:,,所以故选:B7、B【解题分析】利用零点存在性定理判断的范围,从而求得.【题目详解】在上递增,,所以,所以.故选:B8、B【解题分析】根据弧度与角度之间的转化关系进行转化即可.详解】解:,故选.【题目点拨】本题考查了将角度制化为弧度制,属于基础题.9、C【解题分析】根据补集的定义可得结果.【题目详解】因为全集,,所以根据补集的定义得,故选C.【题目点拨】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解10、B【解题分析】换元法后用基本不等式进行求解.【题目详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用指数的运算性质可求得结果.【题目详解】由指数的运算性质可得.故答案为:.12、【解题分析】基本事件总数6,取出的两件产品都是正品包含的基本事件个数2,由此能求出取出的两件产品都是正品的概率.【题目详解】从含有两件正品和一件次品的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,共包含,,,,,6个基本事件,取出的两件产品都是正品包含,2个基本事件,∴取出的两件产品都是正品的概率为,故答案为:.13、【解题分析】根据扇形面积公式计算即可.【题目详解】设弧长为,半径为,为圆心角,所以,由扇形面积公式得.故答案为:14、##【解题分析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【题目详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.15、2【解题分析】由对数的运算法则直接求解.【题目详解】故答案为:216、(1)(2)【解题分析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)令,然后分离参数,求出函数的最大值即可得答案;(2)由题意,令,则,原问题等价于:在上有解,即在上有解,利用一元二次方程根的分布即可求解.【小问1详解】解:由题意,令,则原不等式等价于:存在,使成立,即存在,使成立,由二次函数的性质知,当,即时,取得最大值1,所以【小问2详解】解:由题意,因为方程有负实数根,则令,有,原问题等价于:在上有解,即在上有解令,,则或或或或,解得或或或或,即实数k的取值范围为.18、(1)(2)【解题分析】(1)根据一元二次不等式和一元二次方程的关系得出实数a,b的值;(2)不等式f(x)≥1-x2等价于,结合基本不等式得出实数a的取值范围【小问1详解】若f(x)≤-4的解集为[2,b],则的解集为[2,b]所以,解得【小问2详解】由f(x)≥1-x2得对恒成立即在区间恒成立,所以又,当且仅当时,取等号所以,即,故实数的取值范围为19、(1);(2),;(3)【解题分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数试题解析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方图中x的值是0.0075.-------------3分(2)月平均用电量的众数是=230.-------------5分因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用电量的中位数是224.------------8分(3)月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户有0.0025×20×100=5户,-------------10分抽取比例==,所以月平均用电量在[220,240)的用户中应抽取25×=5户.--12分考点:频率分布直方图及分层抽样20、(1)(2)或.【解题分析】(1)将圆的一般方程化为标准方程,根据两个交点,结合圆心到直线的距离即可求得的取值范围.(2)根据垂径定理及,结合点到直线距离公式,即可得关于的方程,解方程即可求得的值.【题目详解】(1)由已知可得圆的标准方程为,圆心,半径,则到的距离,解得,即的取值范围为.(2)因为,解得所以由圆心到直线距离公式可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论