福建省五校2024届高一数学第一学期期末达标检测模拟试题含解析_第1页
福建省五校2024届高一数学第一学期期末达标检测模拟试题含解析_第2页
福建省五校2024届高一数学第一学期期末达标检测模拟试题含解析_第3页
福建省五校2024届高一数学第一学期期末达标检测模拟试题含解析_第4页
福建省五校2024届高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省五校2024届高一数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各式不正确的是()A.sin(α+)=-sinα B.cos(α+)=-sinαC.sin(-α-2)=-sinα D.cos(α-)=sinα2.已知函数,则()A. B.C. D.3.已知且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.为了得到函数的图象,只要把函数图象上所有的点()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变5.过点,且圆心在直线上的圆的方程是()A. B.C. D.6.若函数的定义域是()A. B.C. D.7.函数是()A.偶函数,在是增函数B.奇函数,在是增函数C.偶函数,在是减函数D.奇函数,在是减函数8.已知指数函数在上单调递增,则的值为()A.3 B.2C. D.9.若,,则sin=A. B.C. D.10.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为______.12.已知,且,若不等式恒成立,则实数的最大值是__________.13.设奇函数在上是增函数,且,若对所有的及任意的都满足,则的取值范围是__________14.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的体积为__________15.下列四个命题:①函数与的图象相同;②函数的最小正周期是;③函数的图象关于直线对称;④函数在区间上是减函数其中正确的命题是__________(填写所有正确命题的序号)16.函数的最小值为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且的图象经过点(1)求的值;(2)求在区间上的最大值;(3)若,求证:在区间内存在零点18.已知函数(,且).(1)判断函数的奇偶性,并予以证明;(2)求使的x的取值范围.19.如图,正方体中,点,分别为棱,的中点.(1)证明:平面;(2)证明:平面.20.已知函数是偶函数.(1)求k的值;(2)设,若函数与的图象有且只有一个公共点,求实数a的取值范围.21.如图所示,矩形所在平面,分别是的中点.(1)求证:平面.(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】将视为锐角,根据“奇变偶不变,符号看象限”得出答案.【题目详解】将视为锐角,∵在第三象限,正弦为负值,且是的2倍为偶数,不改变三角函数的名称,∴,A正确;∵在第四象限,余弦为正值,且是的3倍为奇数数,要改变三角函数的名称,∴,B错误;∵,在第四象限,正弦为负值,且0是的0倍为偶数,不改变三角函数的名称,∴,C正确;∵在第四象限,余弦为正值,且是的1倍为奇数,要改变三角函数的名称,∴,D正确.故选:B.2、A【解题分析】由题中条件,推导出,,,,由此能求出的值【题目详解】解:函数,,,,,故选A【题目点拨】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题3、D【解题分析】根据充分、必要条件的知识确定正确选项.【题目详解】“”时,若,则,不能得到“”.“”时,若,则,不能得到“”.所以“”是“”的既不充分也不必要条件.故选:D4、B【解题分析】直接利用三角函数伸缩变换法则得到答案.【题目详解】为了得到函数的图象,只需把函数的图象上所有的点横坐标缩短到原来的倍,纵坐标不变.故选:B5、B【解题分析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【题目详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B6、C【解题分析】根据偶次根号下非负,分母不等于零求解即可.【题目详解】解:要使函数有意义,则需满足不等式,解得:且,故选:C7、B【解题分析】利用奇偶性定义判断的奇偶性,根据解析式结合指数函数的单调性判断的单调性即可.【题目详解】由且定义域为R,故为奇函数,又是增函数,为减函数,∴为增函数故选:B.8、B【解题分析】令系数为,解出的值,又函数在上单调递增,可得答案【题目详解】解得,又函数在上单调递增,则,故选:B9、B【解题分析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围10、A【解题分析】首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【题目详解】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【题目详解】所以令,则因此当时,取最小值,故答案为:【题目点拨】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.12、9【解题分析】利用求的最小值即可.【题目详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.13、【解题分析】由题意得,又因为在上是增函数,所以当,任意的时,,转化为在时恒成立,即在时恒成立,即可求解.【题目详解】由题意,得,又因为在上是增函数,所以当时,有,所以在时恒成立,即在时恒成立,转化为在时恒成立,所以或或解得:或或,即实数的取值范围是【题目点拨】本题考查函数的恒成立问题的求解,求解的关键是把不等式的恒成立问题进行等价转化,考查分析问题和解答问题的能力,属于中档试题.14、1【解题分析】由图可知,该三棱锥的体积为V=15、①②④【解题分析】首先需要对命题逐个分析,利用三角函数的相关性质求得结果.【题目详解】对于①,,所以两个函数的图象相同,所以①对;对于②,,所以最小正周期是,所以②对;对于③,因为,所以,,,因为,所以函数的图象不关于直线对称,所以③错,对于④,,当时,,所以函数在区间上是减函数,所以④对,故答案为①②④【题目点拨】该题考查的是有关三角函数的性质,涉及到的知识点有利用诱导公式化简函数解析式,余弦函数的周期,正弦型函数的单调性,属于简单题目.16、【解题分析】根据正弦型函数的性质求的最小值.【题目详解】由正弦型函数的性质知:,∴的最小值为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)证明见解析【解题分析】(1)将点代入解析式求解;(2)根据函数单调性求解最大值;(3)零点存在性定理证明在区间内存在零点.【小问1详解】因为函数,且的图象经过点,所以.所以.【小问2详解】因为,所以.所以在区间上单调递减.所以在区间上的最大值是.所以.所以在区间上的最大值是.【小问3详解】因为,所以.因为,,所以,又在区间上的图象是一条连续不断的曲线,由零点存在性定理可得:在区间内存在零点18、(1)是奇函数,证明见解析;(2).【解题分析】(1)先根据对数函数的定义得函数的定义域关于原点对称,再根据函数的奇偶性定义判断即可;(2)由已知条件得,再分与两种情况讨论,结合对数函数的单调性列出不等式组,求出x的取值范围即可.【题目详解】(1)函数是奇函数.证明:要使函数的解析式有意义,需的解析式都有意义,即解得,所以函数的定义域是,所以函数的定义域关于原点对称.因为所以函数是奇函数.(2)若,即.当时,有解得;当时,有解得,综上所述,当时,x的取值范围是,当时,x的取值范围是.【题目点拨】该题考查的是有关函数的问题,涉及到的知识点有本题函数的奇偶性的判断与证明、对数函数的单调性、根据单调性解不等式,不用对参数进行讨论,属于中档题目.19、(1)详见解析;(2)详见解析.【解题分析】(1)利用线面垂直的判定定理即证;(2)设,由题可得EF∥GB,再利用线面平行的判定定理可证.【小问1详解】由正方体的性质,可得,平面,∴,又,∴平面;【小问2详解】设,连接,则∴,∴四边形BFEG为平行四边形,∴EF∥GB,又平面,平面,∴平面20、(1);(2).【解题分析】(1)根据偶函数得到,化简得到,解得答案.(2)化简得方程,设得到有且仅有一个正根,考虑和两种情况,计算得到答案.【题目详解】(1)由函数是偶函数可知:,∴,,即对一切恒成立,∴.(2)函数与的图象有且只有一个公共点,即方程有且只有一个实根.化简得:方程有且只有一个实根.令,则方程有且只有一个正根,当时,,不合题意;当且,解得或.若,,不合题意;若,满足;当且时,即或且,故;综上,实数a的取值范围是.【题目点拨】本题考查了根据函数的奇偶性求参数,函数公共交点问题,意在考查学生的计算能力和综合应用能力,换元是解题关键.21、(1)见解析;(2)见解析【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论