版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省西安中学2024届高一数学第一学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列关系中,正确的是()A. B.C. D.2.已知直线,且,则的值为()A.或 B.C. D.或3.“,”的否定是()A., B.,C., D.,4.设函数,,则是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数5.函数,若,,,则()A. B.C. D.6.为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水()分档户年用水量综合用水单价/(元)第一阶梯(含)第二阶梯(含)第三阶梯以上A. B.C. D.7.若存在正数x使成立,则a的取值范围是A. B.C. D.8.如图,在正中,均为所在边的中点,则以下向量和相等的是()A B.C. D.9.化简的结果是()A. B.1C. D.210.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.=______12.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).13.已知则_______.14.角的终边经过点,则的值为______15.已知函数,则____16.符号表示不超过的最大整数,如,定义函数,则下列命题中正确是________.①函数最大值为;②函数的最小值为;③函数有无数个零点;④函数是增函数;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某乡镇为打造成“生态农业特色乡镇”,决定种植某种水果,该水果单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,单株成本投入(含施肥、人工等)为元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?18.如图,设α是任意角,α∈R,它的终边OA与单位圆相交于点A,点(1)当A在OB的反向延长线上时,求tanα;(2)当OA⊥OB时,求sin2α.19.已知函数,其中(1)求函数的定义域;(2)若函数的最小值为,求的值20.如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD,,若(1)求证:(2)求三棱锥的体积.21.已知,(1)求(2)设与的夹角为,求
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据自然数集、正整数集、整数集以及有理数集的含义判断数与集合的关系.【题目详解】对于A,,所以A错误;对于B,不是整数,所以,所以B错误;对于C,,所以C正确;对于D,因为不含任何元素,则,所以D错误.故选:C.2、D【解题分析】当时,直线,,此时满足,因此适合题意;当时,直线,化为,可得斜率,化为,可得斜率∵,∴,计算得出,综上可得:或本题选择D选项.3、C【解题分析】利用含有一个量词的命题的否定的定义求解即可【题目详解】“,”的否定是“,,”故选:C4、D【解题分析】通过诱导公式,结合正弦函数的性质即可得结果.【题目详解】,所以,,所以则是最小正周期为的奇函数,故选:D.5、A【解题分析】首先判断,和的大小关系,然后根据函数的单调性,判断的大小关系.【题目详解】,,,,,,是上的减函数,.故选:A.6、B【解题分析】设户年用水量为,年缴纳税费为元,根据题意求出的解析式,再利用分段函数的解析式可求出结果.【题目详解】设户年用水量为,年缴纳的税费为元,则,即,当时,,当时,,当时,,所以,解得,所以艾世宗一家年共用水.故选:B7、D【解题分析】根据题意,分析可得,设,利用函数的单调性与最值,即可求解,得到答案【题目详解】根据题意,,设,由基本初等函数的性质,得则函数在R上为增函数,且,则在上,恒成立;若存在正数x使成立,即有正实数解,必有;即a的取值范围为;故选D【题目点拨】本题主要考查了函数单调性的应用,以及不等式的有解问题,其中解答中合理把不等式的有解问题转化为函数的单调性与最值问题是解答的关键,着重考查分析问题和解答问题的能力,属于中档试题8、D【解题分析】根据相等向量的定义直接判断即可.【题目详解】与方向不同,与均不相等;与方向相同,长度相等,.故选:D.9、B【解题分析】利用三角函数的诱导公式化简求解即可.【题目详解】原式.故选:B10、C【解题分析】根据长、宽、高的和不超过可直接得到关系式.【题目详解】长、宽、高之和不超过,.故选:.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题意结合指数的运算法则和对数的运算法则整理计算即可求得最终结果.【题目详解】原式=3+-2=.故答案为点睛】本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题12、(1)(4)(5)【解题分析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【题目详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【题目点拨】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.13、【解题分析】因为,所以14、【解题分析】以三角函数定义分别求得的值即可解决.【题目详解】由角的终边经过点,可知则,,所以故答案为:15、16、【解题分析】令,则,所以,故填.16、②③【解题分析】利用函数中的定义结合函数的最值、周期以及单调性即可求解.【题目详解】函数,函数的最大值为小于,故①不正确;函数的最小值为,故②正确;函数每隔一个单位重复一次,所以函数有无数个零点,故③正确;由函数图像,结合函数单调性定义可知,函数在定义域内不单调,故④不正确;故答案为:②③【题目点拨】本题考查的是取整函数问题,在解答时要充分理解的含义,注意对新函数的最值、单调性以及周期性加以分析,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)4千克,505元.【解题分析】(1)用销售额减去成本投入得出利润的解析式;(2)判断的单调性,及利用基本不等式求出的最大值即可【题目详解】解:(1)由题意得:,(2)由(1)中得(i)当时,;(ii)当时,当且仅当时,即时等号成立.因为,所以当时,,所以当施用肥料为4千克时,种植该果树获得的最大利润是505元.【题目点拨】方法点睛:该题考查的是有关函数的应用问题,解题方法如下:(1)根据题意,结合利润等于收入减去支出,得到函数解析式;(2)利用分段函数的最大值等于每段上的最大值中的较大者,结合求最值的方法得到结果.18、(1);(2)【解题分析】(1)推导出的坐标,由此能求出;(2)设,则,且,解得,,从而,,由此能求出【题目详解】解:(1)设是任意角,,它的终边与单位圆相交于点,点在的反向延长线上,所以,;(2)当时,设,则,且,解得,,或,,则,或,,.或故19、(1);(2)【解题分析】(1)由可得其定义域;(2),由于,,从而可得,进而可求出的值【题目详解】解:(1)要使函数有意义,则有,解得,所以函数的定义域为(2)函数可化为,因为,所以因为,所以,即,由,得,所以【题目点拨】此题考查求对数型复合函数的定义域和最值问题,属于基础题20、(Ⅰ)证明见解析;(Ⅱ)【解题分析】(Ⅰ)在等腰梯形中,易得,即又由已知,可得平面,利用面面垂直判定定理可得平面平面.(Ⅱ)求三棱锥的体积,关键是求三棱锥的高,如果不好求,可以换底,本题这样容易求出三棱锥的体积为试题解析:证明:(Ⅰ)在等腰梯形中,∵,∴又∵,∴,∴,即又∵,∴平面,又∵平面,∴平面平面(Ⅱ)∵∵平面,且,∴,∴三棱锥的体积为考点:线面垂直及求三棱锥体积【方法点睛】(1)证明面面垂直常用面面垂直的判定定理,即利用线面垂直,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.或定义法利用线面垂直的判断定理证明线面垂直,条件齐全,证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高,中线和顶角的角平分线合一、矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶几定制营销策略研究报告
- 重庆财经学院《国际投资学》2023-2024学年第一学期期末试卷
- 策略与未来研究报告
- 仲恺农业工程学院《专题设计(环艺)》2021-2022学年第一学期期末试卷
- 畅游的投资研究报告
- 潮汕祠堂图案研究报告
- 潮汕农村老屋改建方案
- 潮州工地绿化景观施工方案
- 仲恺农业工程学院《模拟电子技术》2022-2023学年期末试卷
- 仲恺农业工程学院《结构素描》2021-2022学年第一学期期末试卷
- GB/T 6003.1-2012试验筛技术要求和检验第1部分:金属丝编织网试验筛
- GB/T 13459-2008劳动防护服防寒保暖要求
- GB/T 1231-1991钢结构用高强度大六角头螺拴、大六角螺母、垫圈技术条件
- 立志做有理想敢担当能吃苦肯奋斗的新时代好青年PPT课件(带内容)
- 陶瓷基复合材料要点课件
- 翻译实习教学大纲
- 心力衰竭-英文版课件
- 邀请回国探亲邀请函范本
- 曾华 民族传统体育(陀螺)
- 留置胃管与胃肠减压术课件
- 抗帕金森病药物 课件
评论
0/150
提交评论