吉林省延边朝鲜族自治州延吉二中2024届数学高一上期末学业质量监测试题含解析_第1页
吉林省延边朝鲜族自治州延吉二中2024届数学高一上期末学业质量监测试题含解析_第2页
吉林省延边朝鲜族自治州延吉二中2024届数学高一上期末学业质量监测试题含解析_第3页
吉林省延边朝鲜族自治州延吉二中2024届数学高一上期末学业质量监测试题含解析_第4页
吉林省延边朝鲜族自治州延吉二中2024届数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省延边朝鲜族自治州延吉二中2024届数学高一上期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设都是非零向量,下列四个条件中,一定能使成立的是()A. B.//C. D.2.函数满足:为偶函数:在上为增函数若,且,则与的大小关系是A. B.C. D.不能确定3.已知函数在上存在零点,则的取值范围为()A. B.C. D.4.定义在上的奇函数以5为周期,若,则在内,的解的最少个数是A.3 B.4C.5 D.75.已知函数的图像是连续的,根据如下对应值表:x1234567239-711-5-12-26函数在区间上的零点至少有()A.5个 B.4个C.3个 D.2个6.集合,,则()A. B.C. D.7.函数的图象与函数的图象关于直线对称,则函数的单调递减区间为A. B.C. D.8.函数f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)9.已知函数f(x)=ax2﹣x﹣8(a>0)在[5,20]上单调递增,则实数a的取值范围是()A.[,+∞) B.[5,+∞)C.(﹣∞,20] D.[5,20]10.已知向量,,且与的夹角为锐角,则的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数是定义在R上的奇函数,当时,2,则在R上的解析式为________.12.已知,且,写出一个满足条件的的值___________13.已知函数,若,则实数的取值范围是__________.14.已知,则__________.15.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______16.函数且的图象恒过定点__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的图象的对称轴的方程;(2)若关于的方程在上有两个不同的实数根,求实数的取值范围18.已知全集,集合,.(1)若,求;(2)若,求实数的取值范围.19.已知二次函数fx(1)当对称轴为x=-1时,(i)求实数a的值;(ii)求f(x)在区间-2,2上的值域.(2)解不等式fx20.已知函数(1)求的最小正周期;(2)设,求的值域和单调递减区间21.已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有一个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由得若,即,则向量共线且方向相反,因此当向量共线且方向相反时,能使成立,本题选择D选项.2、A【解题分析】根据题意,由为偶函数可得函数的对称轴为,进而结合函数的单调性可得上为减函数,结合,且分析可得,据此分析可得答案【题目详解】根据题意,函数满足为偶函数,则函数的对称轴为,则有,又由在上为增函数,则在上为减函数,若,则,又由,则,则有,又由,则,故选A【题目点拨】本题考查函数的单调性与奇偶性的综合应用,涉及函数的对称性,属于中档题3、A【解题分析】根据零点存在定理及函数单调性可知,,解不等式组即可求得的取值范围.【题目详解】因为在上单调递增,根据零点存在定理可得,解得.故选:A【题目点拨】本题考查了函数单调性的判断,零点存在定理的应用,根据零点所在区间求参数的取值范围,属于基础题.4、D【解题分析】由函数的周期为5,可得f(x+5)=f(x),由于f(x)为奇函数,f(3)=0,若x∈(0,10),则可得出f(3)=f(-2)=-f(2)=0,即f(2)=0,∴f(8)=f(3)=0,∴f(7)=f(2)=0.在f(x+5)=f(x)中,令x=-2.5,可得f(2.5)=f(-2.5)=-f(2.5),∴f(2.5)=f(7.5)=0.再根据f(5)=f(0)=0,故在(0,10)上,y=f(x)的零点的个数是2,2.5,3,5,7,7.5,8,共计7个.故选D点睛:本题是函数性质的综合应用,奇偶性周期性的结合,先从周期性入手,利用题目条件中的特殊点得出其它的零点,再结合奇偶性即可得出其它的零点.5、C【解题分析】利用零点存在性定理即可求解.【题目详解】函数的图像是连续的,;;,所以在、,之间一定有零点,即函数在区间上的零点至少有3个.故选:C6、B【解题分析】解不等式可求得集合,由交集定义可得结果.【题目详解】,,.故选:B.7、D【解题分析】先由函数是函数的反函数,所以,再求得,再求函数的定义域,再结合复合函数的单调性求解即可.【题目详解】解:由题意函数的图象与函数的图象关于直线对称知,函数是函数的反函数,所以,即,要使函数有意义,则,即,解得,设,则函数在上单调递增,在上单调递减.因为函数在定义域上为增函数,所以由复合函数的单调性性质可知,则此函数的单调递减区间是,故选D【题目点拨】本题考查了函数的反函数的求法及复合函数的单调性,重点考查了函数的定义域,属中档题.8、C【解题分析】,所以零点在区间(0,1)上考点:零点存在性定理9、A【解题分析】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为,函数在[5,20]上单调递增,则区间在对称轴的右侧,从而可得答案.【题目详解】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为。函数在[5,20]上单调递增,则区间[5,20]在对称轴的右侧.则解得:.故选:A.【题目点拨】本题考查二次函数的单调性,二次函数的单调性与开口方向和对称轴有关,属于基础题.10、B【解题分析】因为与夹角为锐角,所以cos<,>>0,且与不共线,由得,k>-2且,故选B考点:本题主要考查平面向量的坐标运算,向量夹角公式点评:基础题,由夹角为锐角,可得到k得到不等式,应注意夹角为0°时,夹角的余弦值也大于0.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由是定义域在上的奇函数,根据奇函数的性质,可推得的解析式.【题目详解】当时,2,即,设,则,,又为奇函数,,所以在R上的解析式为.故答案为:.12、π(答案不唯一)【解题分析】利用,可得,又,确定可得结果.【题目详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)13、【解题分析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【题目详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【题目点拨】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.14、3【解题分析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【题目详解】由题设,,可得,∴.故答案为:315、①.②.【解题分析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【题目详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.16、【解题分析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【题目详解】令,得,且.函数的图象过定点.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】(1)先将解析式化成正弦型函数,然后利用整体代换即可求得对称轴方程.(2)方程有两个不同的实数根转化成图像与有两个交点即可求得实数的取值范围【小问1详解】,由,,得,故的图象的对称轴方程为,【小问2详解】因为,当时,不满足题意;当时,可得.画出函数在上的图象,由图可知或,解得或.综上,实数a的取值范围为18、(1);(2)或.【解题分析】(1)先求得集合A,当时,求得集合B,根据交集、补集运算的概念,即可得答案.(2)根据题意,可得,根据,可得或,即可得答案【题目详解】(1),当时,所以;(2)因为,所以,又因为,所以或,解得或.19、(1)(i)-13;(ii)(2)答案见解析.【解题分析】(1)(i)解方程(a+1)2a=-1即得解;((2)对a分类讨论解不等式.【小问1详解】解:(i)由题得--(a+1)(ii)fx=-1所以当x∈-2,2时,ff(x)所以f(x)在区间-2,2上的值域为[-5【小问2详解】解:ax当a=0时,-x+1≥0,∴x≤1;当a>0时,(ax-1)(x-1)≥0,∴x当0<a<1时,不等式解集为{x|x≥1a或x≤1}当a=1时,不等式的解集为R;当a>1时,不等式的解集为{x|x≥1或x≤1当a<0时,(ax-1)(-x+1)≤0,∴x所以不等式的解集为{x|1综上,当a=0时,不等式的解集为{x|x≤1}当0<a<1时,不等式的解集为{x|x≥1a或当a=1时,不等式的解集为R;当a>1时,不等式的解集为{x|x≥1或x≤1当a<0时,不等式的解集为{x|120、(1);(2)的值域为,的递减区间为【解题分析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据的范围求得,再结合正弦函数的性质可得到函数的值域,求得单调递减区间【题目详解】(1)(2)∵,,的值域为,当,即,时,单调递减,且,所以的递减区间为21、(1).(2).(3)【解题分析】(1)当时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论的取值范围进行求解即可;(3)根据条件得到,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由,得,解得(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(a)﹣log2[(a﹣4)x+2a﹣5]=0即log2(a)=log2[(a﹣4)x+2a﹣5],即a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1或x,若x=﹣1是方程①的解,则a=a﹣1>0,即a>1,若x是方程①的解,则a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论