版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省常州市常州高级中学分校高一数学第一学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量,,若,则实数值为()A.0 B.-3C.1 D.-12.下列四个函数中,在上为增函数的是()A. B.C. D.3.设,则下列不等式中不成立的是()A. B.C. D.4.已知,,则的值为A. B.C. D.5.函数的图象大致是A. B.C. D.6.已知实数集为,集合,,则A. B.C. D.7.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.8.已知角的终边与单位圆相交于点,则=()A. B.C. D.9.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-210.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,,在函数的图象上,如图,若,则______.12.________13.已知正数x、y满足x+=4,则xy的最大值为_______.14.已知函数,若正实数,满足,则的最小值是____________15.在中,,则_____________16.已知实数x、y满足,则的最小值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB118.已知函数的定义域为R,其图像关于原点对称,且当时,(1)请补全函数的图像,并由图像写出函数在R上的单调递减区间;(2)若,,求的值19.已函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.20.已知幂函数的图象关于轴对称,集合.(1)求的值;(2)当时,的值域为集合,若是成立的充分不必要条件,求实数的取值范围.21.已知集合,,.若,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据,由求解.【题目详解】因为向量,,且,所以,解得,故选:C.2、C【解题分析】A.利用一次函数的性质判断;B.利用二次函数的性质判断;C.利用反比例函数的性质判断;D.由,利用一次函数的性质判断;【题目详解】A.由一次函数的性质知:在上为减函数,故错误;B.由二次函数的性质知:在递减,在上递增,故错误;C.由反比例函数的性质知:在上递增,在递增,则在上为增函数,故正确;D.由知:函数在上为减函数,故错误;故选:C【题目点拨】本题主要考查一次函数,二次函数和反比例函数的单调性,属于基础题.3、B【解题分析】对于A,C,D利用不等式的性质分析即可,对于B举反例即可【题目详解】对于A,因为,所以,所以,即,所以A成立;对于B,若,,则,,此时,所以B不成立;对于C,因为,所以,所以C成立;对于D,因为,所以,则,所以D成立,故选:B.【题目点拨】本题考查不等式的性质的应用,属于基础题.4、A【解题分析】根据角的范围可知,;利用同角三角函数的平方关系和商数关系构造方程可求得结果.【题目详解】由可知:,由得:本题正确选项:【题目点拨】本题考查同角三角函数值的求解,关键是能够熟练掌握同角三角函数的平方关系和商数关系,易错点是忽略角的范围造成函数值符号错误.5、A【解题分析】因为2、4是函数的零点,所以排除B、C;因为时,所以排除D,故选A6、C【解题分析】分析:先求出,再根据集合的交集运算,即可求解结果.详解:由题意,集合,所以,又由集合,所以,故选C.点睛:本题主要考查了集合的混合运算,熟练掌握集合的交集、并集、补集的运算是解答的关键,着重考查了推理与运算能力.7、D【解题分析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【题目详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D8、C【解题分析】先利用三角函数的定义求角的正、余弦,再利用二倍角公式计算即可.【题目详解】角的终边与单位圆相交于点,故,所以,故.故选:C.9、D【解题分析】由奇函数定义得,从而求得,然后由计算【题目详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【题目点拨】本题考查奇函数的定义,掌握奇函数的概念是解题关键10、D【解题分析】A中,周期为,不是偶函数;B中,周期为,函数为奇函数;C中,周期为,函数为奇函数;D中,周期为,函数为偶函数二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【题目详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【题目点拨】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.12、【解题分析】根据对数运算、指数运算和特殊角的三角函数值,整理化简即可.【题目详解】.故答案为:.13、8【解题分析】根据,利用基本不等式即可得出答案.【题目详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.14、9【解题分析】根据指数的运算法则,可求得,根据基本不等式中“1”的代换,化简计算,即可得答案.【题目详解】由题意得,所以,所以,当且仅当,即时取等号,所以的最小值是9故答案为:915、【解题分析】先由正弦定理得到,再由余弦定理求得的值【题目详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【题目点拨】本题考查了正弦定理和余弦定理的运用,属于基础题16、【解题分析】利用基本不等式可得,即求.【题目详解】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明详见解析;(2)证明详见解析.【解题分析】(1)通过证明,来证得平面.(2)通过证明平面,来证得平面平面.【题目详解】(1)由于分别是的中点,所以.由于平面,平面,所以平面.(2)由于平面,平面,所以.由于,所以平面,由于平面,所以平面平面.【题目点拨】本小题主要考查线面平行证明,考查面面垂直的证明,属于中档题.18、(1)作图见解析;单调减区间是和(2)0【解题分析】(1)由图象关于原点对称,补出另一部分,结合图可求出函数的单调减区间,(2)先求出的值,然后根据函数的奇偶性和解析式求解即可【小问1详解】因为函数的图像关于原点对称,所以是R上的奇函数,故由对称性画出图像在R上的单调减区间是和【小问2详解】,所以19、(1);(2),k∈Z.【解题分析】(1)首先利用三角恒等变换化简函数,根据周期公式求函数周期;(2)代入单调递增区间,求解函数的单调递增区间.【题目详解】解:(1).所以,f(x)的周期为.(2)由(k∈Z),得(k∈Z).所以,f(x)的单调递增区间是,k∈Z.20、(1)(2)【解题分析】(1)根据幂函数的定义可得,求出的值,再检验即可得出答案.(2)先求出函数的值域,即得出集合,然后由题意知,根据集合的包含关系得到不等式组,从而求出答案.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘孜职业学院《理解当代中国英语读写》2023-2024学年第一学期期末试卷
- 甘肃政法大学《制药工艺学》2023-2024学年第一学期期末试卷
- 《赤壁赋公开课》课件
- 《疫的概念与功能》课件
- 三年级数学上册六采摘节-混合运算乘加减混合运算说课稿青岛版六三制
- 三年级科学上册第1单元水3水结冰了教案1教科版
- 安全亮眼看世界课件
- 《汽车实习报告》课件
- 2021年卫生系统招聘(预防医学)考试题库
- 洗脑培训课件
- 幼儿心理健康的教育课件
- 冷冻设备租赁合同
- DB43T 1167-2016 高纯(SiO ≥99.997%)石英砂 规范
- 《环境保护产品技术要求 工业废气吸附净化装置》HJT 386-2007
- 化工过程安全管理导则学习考试题及答案
- 银行下半年对公业务工作计划(13篇)
- 2024年公开招聘事业单位工作人员报名登记表
- 给水管移位专项施工方案
- 二级建造师继续教育考试题及答案
- 冀少版八年级下册生物期末复习知识点考点提纲
- 八年级语文上册《作文》专项测试卷及答案
评论
0/150
提交评论