浙江省诸暨市诸暨中学2024届高一上数学期末经典试题含解析_第1页
浙江省诸暨市诸暨中学2024届高一上数学期末经典试题含解析_第2页
浙江省诸暨市诸暨中学2024届高一上数学期末经典试题含解析_第3页
浙江省诸暨市诸暨中学2024届高一上数学期末经典试题含解析_第4页
浙江省诸暨市诸暨中学2024届高一上数学期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省诸暨市诸暨中学2024届高一上数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角2.函数的单调递增区间是()A. B.C. D.3.集合,,则间的关系是()A. B.C. D.4.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B.C. D.5.已知集合P=,,则PQ=()A. B.C. D.6.已知集合,那么A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)7.已知,则的最小值是()A.5 B.6C.7 D.88.下列函数中,既是偶函数,又是(0,+∞)上的减函数的是()A. B.C. D.9.已知集合,则()A. B.C. D.10.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.64二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为________12.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.13.已知函数,,若对任意,存在,使得,则实数的取值范围是__________14.已知,若对一切实数,均有,则___.15.如图,在中,,以为圆心、为半径作圆弧交于点.若圆弧等分的面积,且弧度,则=________.16.已知是球上的点,,,,则球的表面积等于________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,有一块半径为4的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上,连接OC两点,OC与OB所形成的夹角为.(1)写出这个梯形周长y和的函数解析式,并写出它的定义域;(2)求周长y的最大值以及此时梯形的面积.18.已知,(1)分别求,的值;(2)若角终边上一点,求的值19.某种商品在天内每件的销售价格(元)与时间(天)的函数关系为,该商品在天内日销售量(件)与时间(天)之间满足一次函数关系,具体数据如下表:第天(Ⅰ)根据表中提供的数据,求出日销售量关于时间的函数表达式;(Ⅱ)求该商品在这天中的第几天的日销售金额最大,最大值是多少?20.已知函数f(x)=sinxcosx−cos2x+m的最大值为1.(1)求m的值;(2)求当x[0,]时f(x)的取值范围;(3)求使得f(x)≥成立的x的取值集合.21.已知函数(1)求函数的最小正周期和在上的值域;(2)若,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由已知可得即可判断.【题目详解】,即,则且,是第二象限或第三象限角.故选:D.2、B【解题分析】先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数y=log3(x2-2x)的单调递增区间【题目详解】函数y=log5(x2-2x)的定义域为(-∞,0)∪(2,+∞),令t=x2-2x,则y=log5t,∵y=log5t为增函数,t=x2-2x在(-∞,0)上为减函数,在(2,+∞)为增函数,∴函数y=log5(x2-2x)的单调递增区间为(2,+∞),故选B【题目点拨】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调性,其中复合函数单调性“同增异减”是解答本题的关键3、D【解题分析】解指数不等式和一元二次不等式得集合,再判断各选项【题目详解】由题意,或,所以,即故选:D【题目点拨】本题考查集合的运算与集合的关键,考查解一元二次不等式,指数不等式,掌握指数函数性质是解题关键4、C【解题分析】如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选:C.5、B【解题分析】根据集合交集定义求解.【题目详解】故选:B【题目点拨】本题考查交集概念,考查基本分析求解能力,属基础题.6、A【解题分析】利用数轴,取所有元素,得【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理7、C【解题分析】,根据结合基本不等式即可得出答案.【题目详解】解:,因为,又,所以,则,当且仅当,即时,取等号,即的最小值是7.故选:C8、D【解题分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【题目详解】解:根据题意,依次分析选项:对于,是奇函数,不符合题意;对于,,是指数函数,不是偶函数,不符合题意;对于,,是偶函数,但在上是增函数,不符合题意;对于,,为开口向下的二次函数,既是偶函数,又是上的减函数,符合题意;故选.【题目点拨】本题考查函数单调性与奇偶性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.9、B【解题分析】利用集合间的关系,集合的交并补运算对每个选项分析判断.【题目详解】由题,故A错;∵,,∴,B正确;,C错;,D错;故选:B10、B【解题分析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【题目详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据偶次方根被开方数为非负数、对数真数大于零列不等式组,解不等式组求得函数的定义域.【题目详解】依题意,解得,故函数的定义域为.故答案为.【题目点拨】本小题主要考查具体函数定义域的求法,属于基础题.12、或或【解题分析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【题目详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【题目点拨】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.13、【解题分析】若任意,存在,使得成立,只需,∵,在该区间单调递增,即,又∵,在该区间单调递减,即,则,,14、【解题分析】列方程组解得参数a、b,得到解析式后,即可求得的值.【题目详解】由对一切实数,均有可知,即解之得则,满足故故答案:15、【解题分析】设扇形的半径为,则扇形的面积为,直角三角形中,,,面积为,由题意得,∴,∴,故答案为.点睛:本题考查扇形的面积公式及三角形的面积公式的应用,考查学生的计算能力,属于基础题;设出扇形的半径,求出扇形的面积,再在直角三角形中求出高,计算直角三角形的面积,由条件建立等式,解此等式求出与的关系,即可得出结论.16、【解题分析】由已知S,A,B,C是球O表面上的点,所以,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)20,【解题分析】(1)过点C作,表示出,,即可写出梯形周长y和的函数解析式;(2)令,结合二次函数求出y的最大值,求出此时的,再计算梯形面积即可.【小问1详解】由题意得.半圆形钢板半径为4,则,过点C作.在和中,有,,.在中,因为,为等腰三角形,故,所以,.,.【小问2详解】由.令,则,则.则当时,周长y有最大值,最大值20,此时,.故梯形的高,,.18、(1)(2)-7【解题分析】(1)由的值以及的范围,利用同角三角函数的基本关系即可求的值,进而可得的值,利用两角和的正弦公式求.(2)利用三角函数的定义可求的值,利用正切的二倍角公式可求出的值,再由两角和的正切公式即可求解.【小问1详解】因为,,所以,所以,.【小问2详解】由三角函数的定义可得,由正切的二倍角公式可得,19、(Ⅰ)(,,)(Ⅱ)第天的日销售金额最大,为元【解题分析】(Ⅰ)设,代入表中数据可求出,得解析式;(Ⅱ)日销售金额为,根据(1)及已知可得其表达式,这是一个分段函数,分段求出最大值后比较即得最大值【题目详解】(Ⅰ)设日销售量关于时间的函数表达式为,依题意得:,解之得:,所以日销售量关于时间的函数表达式为(,,).(Ⅱ)设商品的日销售金额为(元),依题意:,所以,即:.当,时,,当时,;当,时,,当时,;所以该商品在这天中的第天的日销售金额最大,为元.【题目点拨】本题考查函数模型应用,由所给函数模型求出解析式是解题关键.本题属于中档题20、(1)(2)(3)【解题分析】(1)将函数f(x)=sinxcosx−cos2x+m化为只含有一个三角函数的形式,根据三角函数的性质求其最大值,可得答案;(2)根据x[0,],求出的范围,根据三角函数性质,求得答案;(3)根据f(x)≥,利用三角函数的性质,即可求得答案.【小问1详解】由题意可知,函数的最大值,解得【小问2详解】由(1)可知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论