版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省连云港市2024届高一数学第一学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,为正数,且,则的最小值为()A. B.C. D.2.下列区间包含函数零点的为()A. B.C. D.3.若幂函数y=f(x)经过点(3,),则此函数在定义域上是A.偶函数 B.奇函数C.增函数 D.减函数4.设函数与的图像的交点为,则所在的区间是()A. B.C. D.5.函数的零点所在的区间为()A. B.C. D.6.若直线过点且倾角为,若直线与轴交于点,则点的坐标为()A. B.C. D.7.某几何体的三视图都是全等图形,则该几何体一定是()A.圆柱 B.圆锥C.三棱锥 D.球体8.已知,则的周期为()A. B.C.1 D.29.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知实数,满足,,则的最大值为()A. B.1C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知则_______.12.若函数是R上的减函数,则实数a的取值范围是___13.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具有性质的函数的个数为____________14.若不等式的解集为,则不等式的解集为______.15.已知函数的图象经过定点,若为正整数,那么使得不等式在区间上有解的的最大值是__________.16.定义在上的偶函数满足:当时,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)当时,求函数的值域;(2)如果对任意的,不等式恒成立,求实数的取值范围;(3)是否存在实数,使得函数最大值为0,若存在,求出的值,若不存在,说明理由.18.已知,(1)求的值;(2)求的值19.冰雪装备器材产业是冰雪产业的重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?20.2020年12月26日,我国首座跨海公铁两用桥、世界最长跨海峡公铁两用大桥——平潭海峡公铁两用大桥全面通车.这是中国第一座真正意义上的公铁两用跨海大桥,是连接福州城区和平潭综合实验区的快速通道,远期规划可延长到,对促进两岸经贸合作和文化交流等具有重要意义.在一般情况下,大桥上的车流速度(单位:千米/时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,将造成堵塞,此时车流速度为;当车流密度不超过辆/千米时,车流速度为千米/时,研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)可以达到最大?并求出最大值.21.2020年12月17日凌晨,经过23天月球采样旅行,嫦娥五号返回器携带月球样品成功着陆预定区域,我国首次对外天体无人采样返回任务取得圆满成功,成为时隔40多年来首个完成落月采样并返回地球的国家,标志着我国探月工程“绕,落,回”圆满收官.近年来,得益于我国先进的运载火箭技术,我国在航天领域取得了巨大成就.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度,其中是喷流相对速度,是火箭(除推进剂外)的质量,是推进剂与火箭质量的总和,从称为“总质比”,已知A型火箭的喷流相对速度为.(1)当总质比为200时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的倍,总质比变为原来的,若要使火箭的最大速度至少增加,求在材料更新和技术改进前总质比的最小整数值.参考数据:,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】将拼凑为,利用“1”的妙用及其基本不等式求解即可.【题目详解】∵,∴,即,∴,当且仅当,且时,即,时等号成立故选:.2、C【解题分析】根据零点存在定理,分别判断选项区间的端点值的正负可得答案.【题目详解】,,,,,又为上单调递增连续函数故选:C.3、D【解题分析】幂函数是经过点,设幂函数为,将点代入得到此时函数定义域上是减函数,故选D4、B【解题分析】根据零点所在区间的端点值的乘积小于零可得答案.【题目详解】函数与的图象的交点为,可得设,则是的零点,由,,∴,∴所在的区间是(1,2).故选:B.5、C【解题分析】分析函数的单调性,再利用零点存在性定理判断作答.【题目详解】函数的定义域为,且在上单调递增,而,,所以函数的零点所在的区间为.故选:C6、C【解题分析】利用直线过的定点和倾斜角写出直线的方程,求出与轴的交点,得出答案【题目详解】直线过点且倾角为,则直线方程为,化简得令,解得,点的坐标为故选:C【题目点拨】本题考查点斜式直线方程的应用,考查学生计算能力,属于基础题7、D【解题分析】任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆【题目详解】球、长方体、三棱锥、圆锥中,任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是等圆,故答案为:D【题目点拨】本题考查简单空间图形的三视图,本题解题的关键是看出各个图形的在任意方向上的视图,本题是一个基础题8、A【解题分析】利用两角和的正弦公式化简函数,代入周期计算公式即可求得周期.【题目详解】,周期为:故选:A【题目点拨】本题考查两角和的正弦公式,三角函数的最小正周期,属于基础题.9、A【解题分析】由菱形和平行四边形的定义可判断.【题目详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.10、C【解题分析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值进行求解【题目详解】由,得,令,则,因为,所以,即,所以的最大值为,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为,所以12、【解题分析】按照指数函数的单调性及端点处函数值的大小关系得到不等式组,解不等式组即可.【题目详解】由题知故答案为:.13、【解题分析】根据题意,找出存在的点,如果找不出则需证明:不存在,,使得【题目详解】①因为函数是奇函数,可找关于原点对称的点,比如,存在;②假设存在不相等,,使得,即,得,矛盾,故不存在;③函数为偶函数,,令,,则,存在故答案为:【题目点拨】关键点点睛:证明存在性命题,只需找到满足条件的特殊值即可,反之需要证明不存在,一般考虑反证法,先假设存在,推出矛盾即可,属于中档题.14、【解题分析】由三个二次的关系求,根据分式不等式的解法求不等式的解集.【题目详解】∵不等式的解集为∴,是方程的两根,∴,∴可化为∴∴不等式的解集为,故答案为:.15、【解题分析】由可得出,由已知不等式结合参变量分离法可得出,令,求出函数在上的最大值,即可得出实数的取值范围,即可得解.【题目详解】由已知可得,则,解得,故,由得,因为,则,可得,令,,则函数在上单调递减,所以,,.因此,正整数的最大值为.故答案:.16、12【解题分析】根据偶函数定义,结合时的函数解析式,代值计算即可.【题目详解】因为是定义在上的偶函数,故可得,又当时,,故可得,综上所述:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)[0,2];(2)(-∞,);(3)答案见解析.【解题分析】(1)由h(x)=-2(log3x-1)2+2,根据log3x∈[0,2],即可得值域;(2)由,令t=log3x,因为x∈[1,9],所以t=log3x∈[0,2],得(3-4t)(3-t)>k对一切t∈[0,2]恒成立,利用二次函数求函数的最小值即可;(3)由,假设最大值为0,因为,则有,求解即可.试题解析:(1)h(x)=(4-2log3x)·log3x=-2(log3x-1)2+2,因为x∈[1,9],所以log3x∈[0,2],故函数h(x)的值域为[0,2].(2)由,得(3-4log3x)(3-log3x)>k,令t=log3x,因为x∈[1,9],所以t=log3x∈[0,2],所以(3-4t)(3-t)>k对一切t∈[0,2]恒成立,令,其对称轴为,所以当时,的最小值为,综上,实数k的取值范围为(-∞,)..(3)假设存在实数,使得函数的最大值为0,由.因为,则有,解得,所以不存在实数,使得函数的最大值为0.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).18、(1);(2).【解题分析】(1)先根据的值和二者的平方关系联立求得的值,再把平方即可求出;(2)结合(1)求,的值,最后利用商数关系求得的值,代入即可得解【题目详解】(1)∵,∴,∴,∵,∴,,,∴,∴.(2)由,,解得,,∴∵,,∴【题目点拨】方法点睛:三角恒等常用的方法:三看(看角、看名、看式),三变(变角、变名、变式).19、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解题分析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.20、(1)(2)车流密度为110辆/千米时,车流量最大,最大值为6050辆/时【解题分析】(1)根据题意,当时,设,进而待定系数得,故;(2)结合(1)得,再根据二次函数模型求最值即可.【小问1详解】解:当时,设则,解得:所以【小问2详解】解:由(1)得,当时,当时,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高考政治第一部分微专题小练习专练1商品与货币职能
- 12 富起来到强起来(教学实录)-2023-2024学年道德与法治五年级下册统编版
- 2024年度房地产电商平台内容合作与推广协议3篇
- 四年级信息技术下册 聪明的小海龟教学实录 华中师大版
- 柳州工学院《材料化学导论》2023-2024学年第一学期期末试卷
- 2023-2024学年高中物理 2.3 匀变速直线运动的位移与时间的关系教学实录 新人教版必修第一册
- Unit 3 Amazing animals 第4课时 (教学实录)2024-2025学年人教PEP版(2024)英语三年级上册
- 2024版KTV线上线下融合营销方案合作协议3篇
- 第6单元 语文园地 名师版2024-2025学年五年级语文上册同步教学实录(统编版)
- 办公室房屋租赁合同
- 云南省保山市(2024年-2025年小学三年级语文)人教版期末考试(上学期)试卷(含答案)
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-下(多选、判断题)
- 在奉献中成就精彩人生 课件-2024-2025学年统编版道德与法治七年级上册
- 邮轮运营管理 课件 第七章 邮轮安全管理的全面解析
- 公园保洁服务投标方案
- 2024年高考英语作文预测:倡议书(附答案解析)
- 安徽省2023-2024学年七年级上学期期末数学试题(原卷版)
- 2024年人教版八年级生物(上册)期末试卷及答案(各版本)
- 农作物病虫害防治的社会经济效益分析考核试卷
- 2023年全国职业院校技能大赛-商务数据分析赛项规程
- 第五单元 大单元教学设计-【大单元教学】2024-2025学年七年级语文上册同步备课系列(统编版2024)
评论
0/150
提交评论