广东省潮州市名校2024届数学高一上期末质量跟踪监视模拟试题含解析_第1页
广东省潮州市名校2024届数学高一上期末质量跟踪监视模拟试题含解析_第2页
广东省潮州市名校2024届数学高一上期末质量跟踪监视模拟试题含解析_第3页
广东省潮州市名校2024届数学高一上期末质量跟踪监视模拟试题含解析_第4页
广东省潮州市名校2024届数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省潮州市名校2024届数学高一上期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是圆上动点,则点到直线距离的最大值A.3 B.4C.5 D.62.不等式恒成立,则的取值范围为()A. B.或C. D.3.设集合,.若,则()A. B.C. D.4.已知,,则的大小关系是A. B.C. D.5.命题的否定是()A. B.C. D.6.在中,,,若点满足,则()A. B.C. D.7.函数(且)的图像必经过点()A. B.C. D.8.圆关于直线对称的圆的方程为A. B.C. D.9.已知函数的部分图象如图所示,则的解析式可能为()A. B.C. D.10.已知全集,集合,,它们的关系如图(Venn图)所示,则阴影部分表示的集合为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是______12.已知角的终边经过点,则的值等于_____13.定义在上的函数则的值为______14.已知函数若,则实数的值等于________15.求值:2+=____________16.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?18.提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0:当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数(1)当时,求函数的表达式:(2)如果车流量(单位时间内通过桥上某或利点的车辆数)(单位:辆/小时)那么当车流密度为多大时,车流量可以达到最大,并求出最大值,(精确到1辆/小时)19.(1)已知,求最大值(2)已知且,求的最小值20.从某校随机抽取100名学生,调查他们一学期内参加社团活动的次数,整理得到的频数分布表和频率分布直方图如下:组号分组频数1628317422525612768292合计100从该校随机选取一名学生,试估计这名学生该学期参加社团活动次数少于12次的概率;求频率分布直方图中的a、b的值;假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生本学期参加社团活动的平均次数21.求函数的定义域,并指出它的单调性及单调区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】圆的圆心为(0,3),半径为1.是圆上动点,则点到直线距离的最大值为圆心到直线的距离加上半径即可.又直线恒过定点,所以.所以点到直线距离的最大值为4+1=5.故选C.2、A【解题分析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【题目详解】不等式恒成立,当时,显然不恒成立,所以,解得:.故选:A.3、C【解题分析】∵集合,,∴是方程的解,即∴∴,故选C4、D【解题分析】因为,故,同理,但,故,又,故即,综上,选D点睛:对于对数,如果或,那么;如果或,那么5、C【解题分析】根据存在量词命题的否定是全称量词命题,选出正确选项.【题目详解】因为命题是存在量词命题,所以其否定是全称量词命题,即,.故选:C.6、C【解题分析】由题可得,进一步化简可得.【题目详解】,,.故选:C.7、D【解题分析】根据指数函数的性质,求出其过的定点【题目详解】解:∵(且),且令得,则函数图象必过点,故选:D8、A【解题分析】由题意得,圆心坐标为,设圆心关于直线的对称点为,则,解得,所以对称圆方程为考点:点关于直线的对称点;圆的标准方程9、C【解题分析】根据奇偶性排除A和D,由排除B.【题目详解】由图可知,的图象关于原点对称,是奇函数,,,则函数,是偶函数,排除A和D.当时,恒成立,排除B.故选:C10、C【解题分析】根据所给关系图(Venn图),可知是求,由此可求得答案.【题目详解】根据题意可知,阴影部分表示的是,故,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】,即定义域为点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)12、【解题分析】因为角的终边经过点,过点P到原点的距离为,所以,所以,故填.13、【解题分析】∵定义在上的函数∴故答案为点睛::(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围14、-3【解题分析】先求,再根据自变量范围分类讨论,根据对应解析式列方程解得结果.【题目详解】当a>0时,2a=-2解得a=-1,不成立当a≤0时,a+1=-2,解得a=-3【题目点拨】求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.15、-3【解题分析】利用对数、指数的性质和运算法则求解【题目详解】解:()lg(1)lg1[()3]2+()02+1=﹣3故答案为﹣3【题目点拨】本题考查对数式、指数式的化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则的合理运用16、【解题分析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)投资债券,投资股票;(2)投资债券类产品万元,股票类投资为4万元,收益最大值为万元.【解题分析】(1)设函数解析式,,代入即可求出的值,即可得函数解析式;(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元,则,代入解析式,换元求最值即可.【题目详解】(1)设.由题意可得:,,所以,,(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元依题意得即.令则,则所以当即时,收益最大为万元,所以投资债券类产品万元,股票类投资为4万元,收益最大值为万元.18、(1);(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333/小时..【解题分析】详解】试题分析:本题考查函数模型在实际中的应用以及分段函数最值的求法.(1)根据题意用分段函数并结合待定系数法求出函数的关系式.(2)首先由题意得到的解析式,再根据分段函数最值的求得求得最值即可试题解析:(1)由题意:当时,;当时,设由已知得解得∴综上可得(2)依题意并由(1)可得①当时,为增函数,∴当时,取得最大值,且最大值为1200②当时,,∴当时,取得最大值,且最大值为.所以的最大值为故当车流密度为100辆/千米时,车流量可以达到最大,且最大值为3333辆/小时.19、(1)1;(2)2【解题分析】(1)由基本不等式求出最小值后可得所求最大值(2)凑出积为定值后由基本不等式求得最小值【题目详解】(1),则,,当且仅当,即时等号成立.所以的最大值为1(2)因为且,所以,当且仅当,即时等号成立.所以所求最小值为220、(1)0.9;(2)b=0.125;(3)7.68次.【解题分析】由频数分布表得这名学生该学期参加社团活动次数少于12次的频数为90,由此能求出从该校随机选取一名学生,估计这名学生该学期参加社团活动次数少于12次的概率由频数分布表及频率分布直方图能求出频率分布直方图a,b的值利用频率分布直方图和频数分布表能估计样本中的100名学生本学期参加社团活动的平均次数【题目详解】解:由频数分布表得这名学生该学期参加社团活动次数少于12次的频数为:,从该校随机选取一名学生,估计这名学生该学期参加社

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论