版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省蓝田县高一上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数的定义域为,若存在,使得成立,则称是函数的一个不动点,下列函数存在不动点的是()A. B.C. D.2.,,的大小关系是()A. B.C. D.3.已知为锐角,且,,则A. B.C. D.4.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则5.设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=A.{x|-1<x<3} B.{x|-1<x<1}C.{x|1<x<2} D.{x|2<x<3}6.已知扇形的面积为,当扇形的周长最小时,扇形的圆心角为()A1 B.2C.4 D.87.若a2+b2=2c2(c≠0),则直线ax+by+c=0被圆x2+y2=1所截得的弦长为A. B.1C. D.8.已知集合则()A. B.C. D.9.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,其高为3,底面,底面扇环所对的圆心角为,弧AD长度为弧BC长度的3倍,且,则该曲池的体积为()A B.C. D.10.定义在上的奇函数满足,且当时,,则方程在上的所有根的和为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的值为______12.已知,,与的夹角为60°,则________.13.已知函数若关于x的方程有4个解,分别为,,,,其中,则______,的取值范围是______14.已知向量不共线,,若,则___15.函数的部分图像如图所示,轴,则_________,_________16.已知向量a,b满足|a|=1,|b|=2,a与b的夹角为60°,则|a-b|=________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求函数的单调递增区间;(2)当时,方程恰有两个不同的实数根,求实数的取值范围;(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值18.已知为奇函数,为偶函数,且.(1)求及的解析式及定义域;(2)如果函数,若函数有两个零点,求实数的取值范围.19.已知函数.求函数的值域20.已知函数为奇函数,,其中(1)若函数h(x)的图象过点A(1,1),求实数m和n的值;(2)若m=3,试判断函数在上的单调性并证明;(3)设函数,若对每一个不小于3的实数,都恰有一个小于3的实数,使得成立,求实数m的取值范围21.已知二次函数)满足,且.(1)求函数的解析式;(2)令,求函数在∈[0,2]上的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】把选项中不同的代入,去判断方程是否有解,来验证函数是否存在不动点即可.【题目详解】选项A:若,则,即,方程无解.故函数不存在不动点;选项B:若,则,即,方程无解.故函数不存在不动点;选项C:若,则,即或,两种情况均无解.故函数不存在不动点;选项D:若,则,即设,则,则函数在上存在零点.即方程有解.函数存在不动点.故选:D2、D【解题分析】作出弧度角的正弦线、余弦线和正切线,利用三角函数线来得出、、的大小关系.【题目详解】作出弧度角的正弦线、余弦线和正切线如下图所示,则,,,其中虚线表示的是角的终边,,则,即.故选:D.【题目点拨】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题.3、B【解题分析】∵为锐角,且∴∵,即∴,即∴∴故选B4、A【解题分析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【题目详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.5、A【解题分析】由已知,集合A=(-1,2),B=(1,3),故A∪B=(-1,3),选A考点:本题主要考查集合概念,集合的表示方法和并集运算.6、B【解题分析】先表示出扇形的面积得到圆心角与半径的关系,再利用基本不等式求出周长的最小值,进而求出圆心角的度数.【题目详解】设扇形的圆心角为,半径为,则由题意可得∴,当且仅当时,即时取等号,∴当扇形的圆心角为2时,扇形的周长取得最小值32.故选:B.7、D【解题分析】因为,所以设弦长为,则,即.考点:本小题主要考查直线与圆的位置关系——相交.8、D【解题分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【题目详解】由解得,所以,又因为,所以,故选:D.【题目点拨】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.9、B【解题分析】利用柱体体积公式求体积.【题目详解】不妨设弧AD所在圆的半径为R,弧BC所在圆的半径为r,由弧AD长度为弧BC长度的3倍可知,,即.故该曲池的体积.故选:B10、D【解题分析】首先由题所给条件计算函数的周期性与对称性,作出函数图像,在上的所有根等价于函数与图像的交点,从两函数的交点找到根之间的关系,从而求得所有根的和.【题目详解】函数为奇函数,所以,则的对称轴为:,由知函数周期为8,作出函数图像如下:在上的所有根等价于函数与图像的交点,交点横坐标按如图所示顺序排列,因为,,所以两图像在y轴左侧有504个交点,在y轴右侧有506个交点,故选:D【题目点拨】本题考查函数的图像与性质,根据函数的解析式推出周期性与对称性,考查函数的交点与方程的根的关系,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解题分析】由,得到∴sin∴2sin+4两边都除以,得:2tan故答案为012、10【解题分析】由数量积的定义直接计算.【题目详解】.故答案为:10.13、①.1②.【解题分析】作出图象,将方程有4个解,转化为图象与图象有4个交点,根据二次函数的对称性,对数函数的性质,可得的、的范围与关系,结合图象,可得m的范围,综合分析,即可得答案.【题目详解】作出图象,由方程有4个解,可得图象与图象有4个交点,且,如图所示:由图象可知:且因为,所以,由,可得,因为,所以所以,整理得;当时,令,可得,由韦达定理可得所以,因为且,所以或,则或,所以故答案为:1,【题目点拨】解题的关键是将函数求解问题,转化为图象与图象求交点问题,再结合二次函数,对数函数的性质求解即可,考查数形结合,分析理解,计算化简的能力,属中档题.14、【解题分析】由,将表示为的数乘,求出参数【题目详解】因为向量不共线,,且,所以,即,解得【题目点拨】向量与共线,当且仅当有唯一一个实数,使得15、①.2②.##【解题分析】根据最低点的坐标和函数的零点,可以求出周期,进而可以求出的值,再把最低点的坐标代入函数解析式中,最后求出的值.【题目详解】通过函数的图象可知,点B、C的中点为,与它隔一个零点是,设函数的最小正周期为,则,而,把代入函数解析式中,得.故答案为:;16、【解题分析】|a-b|=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解题分析】(1)由余弦函数的单调性,解不等式,,即可求出;(2)利用函数的性质,结合在时的单调性与最值,可得实数的取值范围;(3)先求出的解析式,然后利用图象关于原点中心对称,是奇函数,可求出的最小值【题目详解】(1)由余弦函数的单调性,解不等式,,得,所以函数的单调递增区间为;(2)函数的单调递增区间为,单调递减区间为,所以函数在上单调递增,在上单调递减,则,,,所以当时,函数与函数的图象有两个公共点,即当时,方程恰有两个不同的实数根时(3)函数的图象向右平移个单位,得到,则是奇函数,则,即,,则因为,所以当时,.【题目点拨】本题综合考查了三角函数的性质,及图象的平移变换,属于中档题18、(1),(2)【解题分析】(1)根据是奇函数,是偶函数,结合,以取代入上式得到,联立求解;(2)易得,,设,转化为,,根据时,与有两个交点,转化为函数,在有一个零点求解.【小问1详解】解:因为是奇函数,是偶函数,所以,,∵,①∴令取代入上式得,即,②联立①②可得,,【小问2详解】,,,可得,∴,.设,∴,,∵当时,与有两个交点,要使函数有两个零点,即使得函数,在有一个零点,(时,只有一个零点)即方程在内只有一个实根,∵,令,则使即可,∴或.∴的取值范围.19、【解题分析】将化为,分和分别应用均值不等式可得答案.【题目详解】解:,当时,,当且仅当,即时取等号;当时,,当且仅当,即时取等号综上所述,的值域为20、(1)(2)单调递增,证明见解析(3)【解题分析】(1)运用奇函数的定义可得,再由图象经过点,解方程可得;(2)在,递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当时,;当时,;分别讨论,,,运用基本不等式和函数的单调性,求得的范围【小问1详解】函数为奇函数,可得,即,则,由的图象过,可得(1),即,解得,故;【小问2详解】,可得,,在上递增证明:设,则,由,可得,,,则,即,可得,递增;【小问3详解】当时,;当时,①时,时,;时,不满足条件,舍去;②当时,时,,,时,,,,由题意可得,,,可得,即;综上可得;③当时,时,,,时,,,,由题意可得,,,可得,可令,则在上递减,,故由,可得,即,综上可得,所以的取值范围是【题目点拨】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题21、(1),(2)【解题分析】(1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得(2)函数g(x)的图象是开口朝
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数学-山东省淄博市2024-2025学年第一学期高三期末摸底质量检测试题和答案
- 《文学概论》课程期末试题B卷及答案
- 小学一年级20以内数学口算练习题
- 合伙经营协议书(3篇)
- 小学数学六年级上册《分数四则混合运算》教学设计
- 秋季腹泻防治彩
- 《心内科常见疾病》课件
- 企业社会责任与品牌价值计划
- 游戏产业行业设计师培训总结
- 教学策略调整与灵活应对计划
- 大概念视域下高中历史融通教学浅思+课件
- 中学生使用手机的利与弊
- 一氧化铅安全技术说明书MSDS
- kv杆塔防腐施工组织设计
- 家装工地形象及成品保护验收标准
- 2018年海南公务员考试申论真题
- GB/T 28799.2-2020冷热水用耐热聚乙烯(PE-RT)管道系统第2部分:管材
- 《毛泽东思想概论》题库
- 劳务派遣人员考核方案
- 意志力讲解学习课件
- 生产作业员质量意识培训课件
评论
0/150
提交评论