2024届重庆市九龙坡区高一数学第一学期期末调研试题含解析_第1页
2024届重庆市九龙坡区高一数学第一学期期末调研试题含解析_第2页
2024届重庆市九龙坡区高一数学第一学期期末调研试题含解析_第3页
2024届重庆市九龙坡区高一数学第一学期期末调研试题含解析_第4页
2024届重庆市九龙坡区高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆市九龙坡区高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.2.在中,是的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知平面直角坐标系中,点,,,、、,,是线段AB的九等分点,则()A.45 B.50C.90 D.1004.设是两个不同的平面,是直线且,,若使成立,则需增加条件()A.是直线且, B.是异面直线,C.是相交直线且, D.是平行直线且,5.若,则的最小值为()A.4 B.3C.2 D.16.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则7.函数的大致图像为()A. B.C. D.8.工艺扇面是中国书面一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为,外圆半径为,内圆半径为.则制作这样一面扇面需要的布料为().A. B.C. D.9.下列函数中,图象的一部分如图所示的是()A. B.C. D.10.与圆关于直线对称的圆的方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.圆在点P(1,)处的切线方程为_____12.若是第三象限的角,则是第________象限角;13.圆关于直线的对称圆的标准方程为___________.14.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.15.已知函数,为偶函数,则______16.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)化简:.(2)已知都是锐角,,求值.18.如图,几何体EF-ABCD中,四边形CDEF是正方形,四边形ABCD为直角梯形,AB∥CD,AD⊥DC,△ACB是腰长为2的等腰直角三角形,平面CDEF⊥平面ABCD(1)求证:BC⊥AF;(2)求几何体EF-ABCD的体积19.已知函数是上的奇函数.(1)求的值;(2)比较与0的大小,并说明理由.20.已知函数(1)求函数的单调区间;(2)求函数在区间上的值域21.已知函数(1)求函数的对称轴和单调减区间;(2)当时,函数的最大值与最小值的和为2,求a

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【题目详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C2、B【解题分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定,即可求解,得到答案.【题目详解】在中,若,可得,满足,即必要性成立;反之不一定成立,所以在中,是的必要不充分条件.故选B.【题目点拨】本题主要考查了充分条件和必要条件的判定,其中解答中熟练应用三角函数的性质是解答的关键,属于基础题.3、B【解题分析】利用向量的加法以及数乘运算可得,再由向量模的坐标表示即可求解.【题目详解】,∴故选:B.4、C【解题分析】要使成立,需要其中一个面的两条相交直线与另一个面平行,是相交直线且,,,,由平面和平面平行的判定定理可得.故选C.5、D【解题分析】利用“乘1法”即得.【题目详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.6、C【解题分析】利用不等式性质逐一判断即可.【题目详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【题目点拨】本题考查了利用不等式性质判断大小,属于基础题.7、D【解题分析】分析函数的定义域、奇偶性,以及的值,结合排除法可得出合适的选项.【题目详解】对任意的,,则函数的定义域为,排除C选项;,,所以,函数为偶函数,排除B选项,因为,排除A选项.故选:D.8、B【解题分析】由扇形的面积公式,可得制作这样一面扇面需要的布料.【题目详解】解:根据题意,由扇形的面积公式可得:制作这样一面扇面需要的布料为.故选:B.【题目点拨】本题考查扇形的面积公式,考查学生的计算能力,属于基础题.9、D【解题分析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【题目详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D10、A【解题分析】设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【题目详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆方程为,故选A.【题目点拨】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、x-y+2=0【解题分析】圆,点在圆上,∴其切线方程为,整理得:12、一或三【解题分析】根据的范围求得的范围,从而确定正确答案.【题目详解】依题意,,,所以当为奇数时,在第三象限;当为偶数时,在第一象限.故答案:一或三13、【解题分析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【题目详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【题目点拨】本题考查圆关于直线对称的圆,属于基础题14、2【解题分析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【题目详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:15、4【解题分析】利用二次函数为偶函数的性质得一次项系数为0,定义域关于原点对称,即可求得的值.【题目详解】由题意得:解得:故答案为:.【题目点拨】本题考查二次函数的性质,考查逻辑推理能力和运算求解能力,求解时注意隐含条件的挖掘.16、【解题分析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【题目详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为.故答案为:【题目点拨】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)通分,然后用辅助角公式计算即可;(2)先通过角范围求出,再通过,利用两角差的正弦公式计算即可.【题目详解】(1);(2)因为都是锐角,则,又,,,18、(1)详见解析;(2).【解题分析】(1)推导出FC⊥CD,FC⊥BC,AC⊥BC,由此BC⊥平面ACF,从而BC⊥AF(2)推导出AC=BC=2,AB4,从而AD=BCsin∠ABC=22,由V几何体EF﹣ABCD=V几何体A﹣CDEF+V几何体F﹣ACB,能求出几何体EF﹣ABCD的体积【题目详解】(1)因为平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,又四边形CDEF是正方形,所以FC⊥CD,FC⊂平面CDEF,所以FC⊥平面ABCD,所以FC⊥BC因为△ACB是腰长为2的等腰直角三角形,所以AC⊥BC又AC∩CF=C,所以BC⊥平面ACF所以BC⊥AF(2)因为△ABC是腰长为2的等腰直角三角形,所以AC=BC=2,AB==4,所以AD=BCsin∠ABC=2=2,CD=AB=BCcos∠ABC=4-2cos45°=2,∴DE=EF=CF=2,由勾股定理得AE==2,因为DE⊥平面ABCD,所以DE⊥AD又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF所以V几何体EF-ABCD=V几何体A-CDEF+V几何体F-ACB==+==【题目点拨】本题考查线线垂直的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题19、(1);(2)【解题分析】(1)由奇函数的性质列式求解;(2)先判断函数的单调性,然后求解,利用单调性与奇偶性即可判断出.【小问1详解】因为是上的奇函数,所以,得时,,满足为奇函数,所以.【小问2详解】设,则,因,所以,所以,即,所以函数在上为增函数,又因为为上的奇函数,所以函数在上为增函数,因为,即,所以,因为是上的奇函数,所以,所以【题目点拨】判断复合函数的单调性时,一般利用换元法,分别判断内函数与外函数的单调性,再由同增异减的性质判断出复合函数的单调性.20、(1)增区间为;减区间为(2)【解题分析】(1)利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论