2024届黑龙江省大庆市让胡路区第一中学高一数学第一学期期末达标检测模拟试题含解析_第1页
2024届黑龙江省大庆市让胡路区第一中学高一数学第一学期期末达标检测模拟试题含解析_第2页
2024届黑龙江省大庆市让胡路区第一中学高一数学第一学期期末达标检测模拟试题含解析_第3页
2024届黑龙江省大庆市让胡路区第一中学高一数学第一学期期末达标检测模拟试题含解析_第4页
2024届黑龙江省大庆市让胡路区第一中学高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省大庆市让胡路区第一中学高一数学第一学期期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在空间直角坐标系中,已知球的球心为,且点在球的球面上,则球的半径为()A.4 B.5C.16 D.252.下列函数中,在区间上是增函数的是()A. B.C. D.3.设,且,则()A. B.C. D.4.关于的方程的实数根的个数为()A.6 B.4C.3 D.25.素数也叫质数,部分素数可写成“”的形式(是素数),法国数学家马丁•梅森就是研究素数的数学家中成就很高的一位,因此后人将“”形式(是素数)的素数称为梅森素数.2018年底发现的第个梅森素数是,它是目前最大的梅森素数.已知第个梅森素数为,第个梅森素数为,则约等于(参考数据:)()A. B.C. D.6.若则A. B.C. D.7.某服装厂2020年生产了15万件服装,若该服装厂的产量每年以20%的增长率递增,则该服装厂的产量首次超过40万件的年份是(参考数据:取,)()A.2024届 B.2024届C.2025年 D.2026年8.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.9.已知函数(其中)的最小正周期为,则()A. B.C.1 D.10.若,则它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.12.函数满足,且在区间上,则的值为____13.已知函数是幂函数,且过点,则___________.14.已知,若,则__________.15.已知函数给出下列四个结论:①存在实数,使函数为奇函数;②对任意实数,函数既无最大值也无最小值;③对任意实数和,函数总存在零点;④对于任意给定的正实数,总存在实数,使函数在区间上单调递减.其中所有正确结论的序号是______________.16.已知函数,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C经过点A(0,0),B(7,7),圆心在直线上(1)求圆C的标准方程;(2)若直线l与圆C相切且与x,y轴截距相等,求直线l的方程18.已知函数(1)若,求不等式的解集;(2)若,且,求的最小值19.已知函数.(1)求的定义域和的值;(2)当时,求,的值.20.提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0:当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数(1)当时,求函数的表达式:(2)如果车流量(单位时间内通过桥上某或利点的车辆数)(单位:辆/小时)那么当车流密度为多大时,车流量可以达到最大,并求出最大值,(精确到1辆/小时)21.已知二次函数f(x)满足:f(0)=f(4)=4,且该函数的最小值为1(1)求此二次函数f(x)的解析式;(2)若函数f(x)的定义域为A=m,n(其中0<m<n),问是否存在这样的两个实数m,n,使得函数f(x)的值域也为A?若存在,求出m,n(3)若对于任意x1∈0,3,总存在x2∈1,2

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据空间中两点间距离公式,即可求得球的半径.【题目详解】球的球心为,且点在球的球面上,所以设球的半径为则.故选:B【题目点拨】本题考查了空间中两点间距离公式的简单应用,属于基础题.2、B【解题分析】根据函数单调性的定义和性质分别进行判断即可【题目详解】解:对于选项A.的对称轴为,在区间上是减函数,不满足条件对于选项B.在区间上是增函数,满足条件对于选项C.在区间上是减函数,不满足条件对于选项D.在区间上是减函数,不满足条件故满足条件的函数是故选:B【题目点拨】本题主要考查函数单调性的判断,要求熟练掌握常见函数的单调性,属基础题3、C【解题分析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【题目详解】即故选:C【题目点拨】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.4、D【解题分析】转化为求或的实根个数之和,再构造函数可求解.【题目详解】因为,所以,所以,所以或,令,则或,因为为增函数,且的值域为,所以和都有且只有一个实根,且两个实根不相等,所以原方程的实根的个数为.故选:D5、C【解题分析】根据两数远远大于1,的值约等于,设,运用指数运算法则,把指数式转化对数式,最后求出的值.【题目详解】因为两数远远大于1,所以的值约等于,设,因此有.故选C【题目点拨】本题考查了数学估算能力,考查了指数运算性质、指数式转化为对数式,属于基础题.6、A【解题分析】集合A三个实数0,1,2,而集合B表示的是大于等于1小于2的所有实数,所以两个集合的交集{1},故选A.考点:集合的运算.7、D【解题分析】设该服装厂的产量首次超过40万件的年份为n,进而得,再结合对数运算解不等式即可得答案.【题目详解】解:设该服装厂的产量首次超过40万件的年份为n,则,得,因为,所以故选:D8、D【解题分析】利用函数的奇偶性得到,再解不等式组即得解.【题目详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D9、D【解题分析】根据正弦型函数的最小正周期求ω,从而可求的值.【题目详解】由题可知,,∴.故选:D.10、C【解题分析】根据象限角的定义判断【题目详解】因为,所以是第三象限角故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为12、【解题分析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.13、【解题分析】由题意,设代入点坐标可得,计算即得解【题目详解】由题意,设,过点故,解得故则故答案为:14、【解题分析】由已知先求得,再求得,代入可得所需求的函数值.【题目详解】由已知得,即,所以,而,故答案为.【题目点拨】本题考查函数求值中的给值求值问题,关键在于由已知的函数值求得其数量关系,代入所需求的函数解析式中,可得其值,属于基础题.15、①②③④【解题分析】分别作出,和的函数的图象,由图象即可判断①②③④的正确性,即可得正确答案.【题目详解】如上图分别为,和时函数的图象,对于①:当时,,图象如图关于原点对称,所以存在使得函数为奇函数,故①正确;对于②:由三个图知当时,,当时,,所以函数既无最大值也无最小值;故②正确;对于③:如图和图中存在实数使得函数图象与没有交点,此时函数没有零点,所以对任意实数和,函数总存在零点不成立;故③不正确对于④:如图,对于任意给定的正实数,取即可使函数在区间上单调递减,故④正确;故答案为:①②④【题目点拨】关键点点睛:本题解题关键点是分段函数图象,涉及二次函数的图象,要讨论,和即明确分段区间,作出函数图象,数形结合可研究分段函数的性质.16、2【解题分析】根据自变量的范围,由内至外逐层求值可解.【题目详解】又故答案为:2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(x﹣3)2+(y﹣4)2=25(2)yx或x+y+57=0或x+y﹣57=0【解题分析】(1)设圆心C(a,b),半径为r,然后根据条件建立方程组求解即可;(2)分直线l经过原点、直线l不经过原点两种情况求解即可.【小问1详解】根据题意,设圆心C(a,b),半径为r,标准方程为(x﹣a)2+(y﹣b)2=r2,圆C经过点A(0,0),B(7,7),圆心在直线上,则有,解可得,则圆C的标准方程为(x﹣3)2+(y﹣4)2=25,小问2详解】若直线l与圆C相切且与x,y轴截距相等,分2种情况讨论:①直线l经过原点,设直线l的方程为y=kx,则有5,解得k,此时直线l的方程为yx;②直线l不经过原点,设直线l的方程为x+y﹣m=0,则有5,解得m=7+5或7﹣5,此时直线l方程为x+y+57=0或x+y﹣57=0;综合可得:直线l的方程为yx或x+y+57=0或x+y﹣57=018、(1)答案不唯一,具体见解析(2)【解题分析】(1)由,对分类讨论,判断与的大小,确定不等式的解集.(2)利用把用表示,代入表示为的函数,利用基本不等式可求.【题目详解】解:(1)因为,所以,由,得,即,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;(2)因为,由已知,可得,∴,∵,∴,∴,当且仅当时取等号,所以的最小值为【题目点拨】本题考查一元二次不等式的解法,基本不等式的应用,考查分类讨论的思想,运算求解能力,属于中档题.19、(1)定义域为,;(2),.【解题分析】(1)由根式、分式的性质求函数定义域,将自变量代入求即可.(2)根据a的范围,结合(1)的定义域判断所求函数值是否有意义,再将自变量代入求值即可.【小问1详解】由,则定义域为,且.【小问2详解】由,结合(1)知:,有意义.所以,.20、(1);(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333/小时..【解题分析】详解】试题分析:本题考查函数模型在实际中的应用以及分段函数最值的求法.(1)根据题意用分段函数并结合待定系数法求出函数的关系式.(2)首先由题意得到的解析式,再根据分段函数最值的求得求得最值即可试题解析:(1)由题意:当时,;当时,设由已知得解得∴综上可得(2)依题意并由(1)可得①当时,为增函数,∴当时,取得最大值,且最大值为1200②当时,,∴当时,取得最大值,且最大值为.所以的最大值为故当车流密度为100辆/千米时,车流量可以达到最大,且最大值为3333辆/小时.21、(1)f(x)=34x2-3x+4(2)存在满足条件的m,n,其中【解题分析】1设f(x)=a(x-2)2+1,由f(0)=4,求出a2分m<n≤2时,当m<2<n时,当2≤m<n时,三种情况讨论,可得满足条件的m,n,其中m=1,n=4;3若对于任意的x1∈0,3,总存在x解析:(1)依题意,可设f(x)=a(x-2)2+1,因f(0)=4,代入得(2)假设存在这样的m,n,分类讨论如下:当m<n≤2时,依题意,f(m)=n,f(n)=m,即3m+n=83,代入进一步得当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论