上海市六十中学2024届数学高一上期末质量检测模拟试题含解析_第1页
上海市六十中学2024届数学高一上期末质量检测模拟试题含解析_第2页
上海市六十中学2024届数学高一上期末质量检测模拟试题含解析_第3页
上海市六十中学2024届数学高一上期末质量检测模拟试题含解析_第4页
上海市六十中学2024届数学高一上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市六十中学2024届数学高一上期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与圆相切,则的值是()A.-2或12 B.2或-12C.-2或-12 D.2或122.已知函数的最大值与最小值的差为2,则()A.4 B.3C.2 D.3.一个几何体的三视图如图所示,则几何体的体积是()A. B.C. D.24.下图记录了某景区某年月至月客流量情况:根据该折线图,下列说法正确的是()A.景区客流量逐月增加B.客流量的中位数为月份对应的游客人数C.月至月的客流量情况相对于月至月波动性更小,变化比较平稳D.月至月的客流量增长量与月至月的客流量回落量基本一致5.若,,,则a,b,c之间的大小关系是()A.c>b>a B.c>a>bC.a>c>b D.b>a>c6.若a,b都为正实数且,则的最大值是()A. B.C. D.7.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}8.若无论实数取何值,直线与圆相交,则的取值范围为()A. B.C. D.9.设平面向量,则A. B.C. D.10.的值是A.0 B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线经过点,且与直线平行,则直线的方程为__________12.函数的单调递增区间是___________.13.若,则_________14.函数的图象必过定点___________15.已知集合,,则集合中元素的个数为__________16.直线2x+(1-a)y+2=0与直线ax-3y-2=0平行,则a=__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)画出这个函数的图象(2)当0<a<2时f(a)>f(2),利用函数图象求出a的取值范围18.设,,已知,求a的值.19.已知函数是定义在区间上的奇函数,且.(1)求函数的解析式;(2)判断函数在区间上的单调性,并用函数单调性的定义证明.20.已知定义域为的函数是奇函数.(1)求实数的值;(2)判断的单调性并用定义证明;(3)已知不等式恒成立,求实数的取值范围.21.设函数,其中,且.(1)求的定义域;(2)当时,函数图象上是否存在不同两点,使过这两点的直线平行于轴,并证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】解方程即得解.【题目详解】解:由题得圆的圆心坐标为半径为1,所以或.故选:C2、C【解题分析】根据解析式可得其单调性,根据x的范围,可求得的最大值和最小值,根据题意,列出方程,即可求得a值.【题目详解】由题意得在上为单调递增函数,所以,,所以,解得,又,所以.故选:C3、B【解题分析】由三视图可知此几何体是由一个长为2,宽为,高为的长方体过三个顶点切去一角的空间多面体,如图所示,则其体积为.故正确答案选B.考点:1.三视图;2.简单组合体体积.4、C【解题分析】根据折线图,由中位数求法、极差的意义,结合各选项的描述判断正误即可.【题目详解】A:景区客流量有增有减,故错误;B:由图知:按各月份客流量排序为且是10个月份的客流量,因此数据的中位数为月份和月份对应客流量的平均数,故错误;C:由月至月的客流量相对于月至月的客流量:极差较小且各月份数据相对比较集中,故波动性更小,正确;D:由折线图知:月至月的客流量增长量与月至月的客流量回落量相比明显不同,故错误.故选:C5、C【解题分析】利用指数函数与对数函数的单调性即可得出【题目详解】∵a=22.5>1,<0,,∴a>c>b,故选C【题目点拨】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题6、D【解题分析】由基本不等式,结合题中条件,直接求解,即可得出结果.【题目详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D7、A【解题分析】直接根据交集的定义即可得解.【题目详解】解:因为A={x|-2<x<1},B={x|x<-1或x>3},所以.故选:A.8、A【解题分析】利用二元二次方程表示圆的条件及点与圆的位置关系即得.【题目详解】由圆,可知圆,∴,又∵直线,即,恒过定点,∴点在圆的内部,∴,即,综上,.故选:A.9、A【解题分析】∵∴故选A;【考点】:此题重点考察向量加减、数乘的坐标运算;【突破】:准确应用向量的坐标运算公式是解题的关键;10、B【解题分析】利用诱导公式和和差角公式直接求解.【题目详解】故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】设与直线平行的直线,将点代入得.即所求方程为12、##【解题分析】求出函数的定义域,利用复合函数法可求得函数的单调递增区间.【题目详解】由得,解得,所以函数的定义域为.设内层函数,对称轴方程为,抛物线开口向下,函数在区间上单调递增,在区间上单调递减,外层函数为减函数,所以函数的单调递增区间为.故答案为:.13、【解题分析】先求得,然后求得.【题目详解】,.故答案为:14、【解题分析】f(x)=k(x-1)-ax-1,x=1时,y=f(x)=-1,∴图象必过定点(1,-1).15、2【解题分析】依题意,故,即元素个数为个.16、3【解题分析】a=0时不满足条件,∵直线2x+(1-a)y+2=0与直线ax-3y-2=0平行a≠0,∴解得a=3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2){a|0<a<}.【解题分析】(1)由函数整体加绝对值知,只需将函数位于x轴下方的图像关于x对称即可;(2)利用数形结合,结合a范围即可得解.【题目详解】(1)如图:​(2)令f(a)=f(2),即|log3a|=|log32|,解得a=或a=2.从图像可知,当0<a<时,满足f(a)>f(2),所以a的取值范围是{a|0<a<}.【题目点拨】本题主要考查了对数函数的图象及图象变换,利用数形结合解不等式.18、-3【解题分析】根据,分和,讨论求解.【题目详解】解:因为,,且,所以当时,解得,此时,不符合题意;当时,解得或,若,则,不成立;若,则,成立;所以a的值为-3.19、(1)(2)增函数,证明见解析【解题分析】(1)又函数为奇函数可得,结合求得,即可得出答案;(2)令,利用作差法判断的大小,即可得出结论.【小问1详解】解:因为函数是定义在区间上的奇函数,所以,即,所以,又,所以,所以;【小问2详解】解:增函数,证明如下:令,则,因为,所以,,所以,即,所以函数在区间上递增.20、(1);(2)减函数,证明见解析;(3).【解题分析】(1)根据可求的值,注意检验.(2)利用增函数的定义可证明在上是减函数.(3)利用函数的奇偶性和单调性可把原不等式化为,利用对数函数的性质可求的取值范围.【题目详解】(1)是上的奇函数,,得,此时,,故为奇函数,所以.(2)为减函数,证明如下:设是上任意两个实数,且,,,,即,,,,即,在上是减函数.(3)不等式恒成立,.是奇函数,,即不等式恒成立又在上是减函数,不等式恒成立,当时,得,.当时,得,.综上,实数的取值范围是.【题目点拨】本题考查了函数的奇偶性与单调性,考查了不等式恒成立问题,考查了应用对数函数单调性解与对数有关的不等式,涉及了指数函数与对数函数的图象与性质,体现了转化思想在解题中的运用.21、(1)当时,定义域为;当时,定义域为.(2)不存在,证明见解析.【解题分析】(1)首先根据题意得到,再分类讨论解不等式即可.(2)首先根据单调性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论