山东省德州市平原中英文实验中学2024届高一数学第一学期期末达标检测试题含解析_第1页
山东省德州市平原中英文实验中学2024届高一数学第一学期期末达标检测试题含解析_第2页
山东省德州市平原中英文实验中学2024届高一数学第一学期期末达标检测试题含解析_第3页
山东省德州市平原中英文实验中学2024届高一数学第一学期期末达标检测试题含解析_第4页
山东省德州市平原中英文实验中学2024届高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省德州市平原中英文实验中学2024届高一数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法正确的是()A.锐角是第一象限角 B.第二象限角是钝角C.第一象限角是锐角 D.第四象限角是负角2.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴3.已知圆(,为常数)与.若圆心与圆心关于直线对称,则圆与的位置关系是()A.内含 B.相交C.内切 D.相离4.中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是℃,环境温度是℃,则经过分钟后物体的温度℃将满足,其中是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,℃的水应大约冷却()分钟冲泡该绿茶(参考数据:,)A.3 B.3.6C.4 D.4.85.已知,则()A. B.C. D.6.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}7.设,,,则的大小顺序是A. B.C. D.8.下列函数中与函数相等的是A. B.C. D.9.用函数表示函数和中的较大者,记为:,若,,则的大致图像为()A. B.C. D.10.函数在区间(0,1)内的零点个数是A.0 B.1C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.在区间上随机地取一个实数,若实数满足的概率为,则________.12.已知函数(且),若对,,都有.则实数a的取值范围是___________13.若函数在上存在零点,则实数的取值范围是________14.棱长为2个单位长度的正方体中,以为坐标原点,以,,分别为,,轴,则与的交点的坐标为__________15.命题“”的否定是______.16.已知,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合(1)求;(2)设集合,若,求实数的取值范围18.已知.(1)求函数的单调递减区间;(2)求函数的最值并写出取最值时自变量的值;(3)若函数为偶函数,求的值.19.为了印刷服务上一个新台阶,学校打印社花费5万元购进了一套先进印刷设备,该设备每年的管理费是0.45万元,使用年时,总的维修费用为万元,问:(1)设年平均费用为y万元,写出y关于x的表达式;(年平均费用=)(2)这套设备最多使用多少年报废合适?(即使用多少年的年平均费用最少)20.已知函数是定义域为的奇函数.(1)求实数的值;(2)若,不等式在上恒成立,求实数的取值范围;(3)若,且函数在上最小值为,求的值.21.已知向量,,函数,且的图像过点.(1)求的值;(2)将的图像向左平移个单位后得到函数的图像,若图像上各点最高点到点的距离的最小值为1,求的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据角的定义判断【题目详解】锐角大于而小于,是第一象限角,但第一象限角不都是锐角,第二象限角不都是钝角,第四象限角有正角有负角.只有A正确故选:A2、D【解题分析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【题目详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D3、B【解题分析】由对称求出,再由圆心距与半径关系得圆与圆的位置关系【题目详解】,,半径为,关于直线的对称点为,即,所以,圆半径为,,又,所以两圆相交故选:B4、B【解题分析】根据题意求出k的值,再将θ=80℃,=100℃,=20℃代入即可求得t的值.【题目详解】由题可知:,冲泡绿茶时水温为80℃,故.故选:B.5、B【解题分析】利用诱导公式,化简条件及结论,再利用二倍角公式,即可求得结论【题目详解】解:∵sin,∴sin,∵sinsincos(2α)=1﹣2sin21故选B【题目点拨】本题考查三角函数的化简,考查诱导公式、二倍角公式的运用,属于基础题6、B【解题分析】根据集合的补集和交集的概念得到结果即可.【题目详解】全集,集合,,;,故答案为B.【题目点拨】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算7、A【解题分析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【题目详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【题目点拨】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.8、C【解题分析】对于选项A,D对应的函数与函数的对应法则不同,对于选项B对应的函数与函数的定义域不同,对于选项C对应的函数与函数的定义域、对应法则相同,得解.【题目详解】解:对于选项A,等价于,即A不符合题意,对于选项B,等价于,即B不符合题意,对于选项C,等价于,即C符合题意,对于选项D,,显然不符合题意,即D不符合题意,故选C.【题目点拨】本题考查了同一函数的判断、函数的对应法则及定义域,属基础题.9、A【解题分析】利用特殊值确定正确选项.【题目详解】依题意,,排除CD选项.,排除B选项.所以A选项正确.故选:A10、B【解题分析】,在范围内,函数为单调递增函数.又,,,故在区间存在零点,又函数为单调函数,故零点只有一个考点:导函数,函数零点二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】利用几何概型中的长度比即可求解.【题目详解】实数满足,解得,,解得,故答案为:1【题目点拨】本题考查了几何概率的应用,属于基础题.12、【解题分析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【题目详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:13、【解题分析】分和并结合图象讨论即可【题目详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:14、【解题分析】设即的坐标为15、【解题分析】根据全称命题的否定是特称命题,写出结论.【题目详解】原命题是全称命题,故其否定是特称命题,所以原命题的否定是“”.【题目点拨】本小题主要考查全称命题的否定是特称命题,除了形式上的否定外,还要注意否定结论,属于基础题.16、【解题分析】利用交集的运算解题即可.【题目详解】交集即为共同的部分,即.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据指数函数的性质,结合集合并集的定义进行求解即可;(2)根据(1)的结论,结合集合是否为空集分类讨论进行求解即可.【小问1详解】由,得,所以;【小问2详解】当时:,即,当时:,解得,综上所述,的取值范围为.18、(1);(2)当时,;当时,;(3).【解题分析】(1)利用二倍角公式、辅助角公式化简函数,再利用正弦函数的单调性求解作答.(2)利用(1)中函数,借助正弦函数的最值计算作答.(3)求出,再利用三角函数的奇偶性推理计算作答.【小问1详解】依题意,,由得:,所以函数的单调递减区间是.【小问2详解】由(1)知,当,即时,,当,即时,,所以,当时,,当时,.【小问3详解】由(1)知,,因函数为偶函数,于是得,化简整理得,而,则,所以的值是.19、(1)(2)最多使用10年报废【解题分析】(1)根据题意,即可求得年平均费用y关于x的表达式;(2)由,结合基本不等式,即可求解.【小问1详解】解:由题意,设备每年的管理费是0.45万元,使用年时,总的维修费用为万元,所以关于的表达式为.【小问2详解】解:因为,所以,当且仅当时取等号,即时,函数有最小值,即这套设备最多使用10年报废.20、(1)0(2)(3)2.【解题分析】(1)是定义域为的奇函数,由,得到的值;(2)根据得到的范围,从而得到的单调性,结合的奇偶性,得到将不等式转化为在上恒成立,通过得到的范围;(3)由得到,从而得到解析式,令,得到,动轴定区间分类讨论,根据最小值为,得到的值.【题目详解】(1)因为是定义域为的奇函数,所以,所以,所以,经检验,当时,为上的奇函数(2)由(1)知:,因为,所以,又且,所以,所以是.上的单调递减函数,又是定义域为的奇函数,所以,即在上恒成立,所以,即,所以实数的取值范围为(3)因为,所以,解得或(舍去),所以,令,则,因为在R上为增函数,且,所以,因为在上最小值为,所以在上的最小值为,因为的对称轴为,所以当时,,解得或(舍去),当时,,解得(舍去),综上可知:.【题目点拨】本题考查根据函数奇偶性求参数的值,根据函数的性质解不等式,二次函数在上恒成立问题,根据函数的最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论