版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省巢湖市2024届高一上数学期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的定义域为,命题为奇函数,命题,那么是的()A.充分必要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件2.已知向量,满足,,且与夹角为,则()A. B.C. D.3.某几何体的三视图如图所示,则该几何体的体积是A. B.8C.20 D.244.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.5.如图,正方体的棱长为1,动点在线上,,分别是,的中点,则下列结论中错误的是()A. B.平面C.三棱锥的体积为定值 D.存在点,使得平面平面6.若函数的定义域是,则函数值域为()A. B.C. D.7.已知,则a,b,c的大小关系是()A. B.C. D.8.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数9.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}10.对于空间中的直线,以及平面,,下列说法正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,则等于______12.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________13.已知函数(且),若对,,都有.则实数a的取值范围是___________14.如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________15.已知函数,若时,恒成立,则实数k的取值范围是_____.16.已知是定义在正整数集上的严格减函数,它的值域是整数集的一个子集,并且,,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中)的图象上相邻两个最高点的距离为(Ⅰ)求函数的图象的对称轴;(Ⅱ)若函数在内有两个零点,求的取值范围及的值18.若向量的最大值为(1)求的值及图像的对称中心;(2)若不等式在上恒成立,求的取值范围19.如图所示,在边长为8的正三角形ABC中,E,F依次是AB,AC的中点,,D,H,G为垂足,若将绕AD旋转,求阴影部分形成的几何体的表面积与体积.20.已知函数,(1)求函数的最小正周期;(2)用“五点法”做出在区间的简图21.王先生发现他的几位朋友从事电子产品的配件批发,生意相当火爆.因此,王先生将自己的工厂转型生产小型电子产品的配件.经过市场调研,生产小型电子产品的配件.需投入固定成本为2万元,每生产万件,还需另投入万元,在年产量不足8万件时,(万元);在年产量不低于8万件时,(万元).每件产品售价为4元.通过市场分析,王先生生产的电子产品的配件都能在当年全部售完.(1)写出年利润(万元)关于年产量(万件)的函数解析式;(2)求年产量为多少万件时,王先生在电子产品的配件的生产中所获得的年利润最大?并求出年利润的最大值?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据奇函数的性质及命题充分必要性的概念直接判断.【题目详解】为奇函数,则,但,无法得函数为奇函数,例如,满足,但是为偶函数,所以是的充分不必要条件,故选:C.2、D【解题分析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【题目详解】根据向量运算性质,,故选:D3、C【解题分析】由三视图可知,该几何体为长方体上方放了一个直三棱柱,其体积为:.故选C点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图4、C【解题分析】根据长、宽、高的和不超过可直接得到关系式.【题目详解】长、宽、高之和不超过,.故选:.5、D【解题分析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明,再证明平面即可.对C,根据三棱锥以为底,且同底高不变,故体积不变判定即可.对D,根据与平面有交点判定即可.【题目详解】在A中,因为分别是的中点,所以,故A正确;在B中,因为,,故,故.故,又有,所以平面,故B正确;在C中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,故C正确.在D中,与平面有交点,所以不存在点,使得平面平面,故D错误.故选:D.【题目点拨】方法点睛:本题考查空间点线面位置关系,考查棱锥的体积,考查线面垂直的判定定理的应用,判断线面垂直的方法主要有:
线面垂直的判定定理,直线与平面内的两条相交直线垂直;
面面垂直的性质定理,若两平面互相垂直,则在一个平面内垂直于交线的垂直于另一个平面;
线面垂直的性质定理,两条平行线中有一条与平面垂直,则另一条也与平面垂直;
面面平行的性质定理,直线垂直于两平行平面之一,必然垂直于另一个平面6、A【解题分析】根据的单调性求得正确答案.【题目详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A7、B【解题分析】根据指数函数的单调性、对数函数的单调性可得答案.【题目详解】根据指数函数的单调性可知,,即,即c>1,由对数函数的单调性可知,即.所以c>a>b故选:B8、D【解题分析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【题目详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.9、B【解题分析】分析】根据补集的定义求出,再利用并集的定义求解即可.【题目详解】因为全集,,所以,又因为集合,所以,故选:B.10、D【解题分析】利用线面关系,面面关系的性质逐一判断.【题目详解】解:对于A选项,,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,,的夹角不一定为90°,故C错误;故对D选项,因为,,故,因为,故,故D正确.故选:D.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.12、7【解题分析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次13、【解题分析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【题目详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:14、24:25【解题分析】设三角形三边的边长分别为,分别求出阴影部分面积和大正方形面积即可求解.【题目详解】解:由题意,“赵爽弦图”由四个全等的直角三角形围成,其中,设三角形三边的边长分别为,则大正方形的边长为5,所以大正方形的面积,如图,将延长到,则,所以,又到的距离即为到的距离,所以三角形的面积等于三角形的面积,即,所以“赵爽弦图”外面(图中阴影部分)的面积,所以“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为.故答案为:24:25.15、【解题分析】当时,,当时,,又,如图所示:当时,在处取得最大值,且,令,则数列是以1为首项,以为公比的等比数列,∴,∴,若时,恒成立,只需,当上,均有恒成立,结合图形知:,∴,∴,令,,当时,,∴,∴,当时,,,∴,∴最大,∴,∴.考点:1.函数图像;2.恒成立问题;3.数列的最值.16、【解题分析】利用严格单调减函数定义求得值,然后在由区间上整数个数,可确定的值【题目详解】,根据题意,,又,,所以,即,,在上只有13个整数,因此可得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ),.【解题分析】(Ⅰ)由题意,图象上相邻两个最高点的距离为,即周期,可得,即可求解对称轴;(Ⅱ)函数在,内有两个零点,,转化为函数与函数有两个交点,即可求解的范围;在,内有两个零点,是关于对称轴是对称的,即可求解的值【题目详解】(Ⅰ)∵已知函数(其中)的图象上相邻两个最高点的距离为,∴,故函数.令,得+,故函数的图象的对称轴方程为+,;(Ⅱ)由(Ⅰ)可知函数.∵x∈,∴∈[,]∴-≤≤,要使函数在内有两个零点∴-<m<,且m即m的取值范围是(-,)∪(,)函数在内有两个零点,可得是关于对称轴是对称的,对称轴为=2x-,得x=,在内的对称轴x=或当m∈(-,1)时,可得=,=当m∈(-1,-)时,可得x1+x2=,∴==18、(1)(2)【解题分析】(1)先利用向量的数量积公式和倍角公式对函数式进行化简,再利用两倍角公式以及两角差的正弦公式进行整理,然后根据最大值为解出的值,最后根据正弦函数的性质求得函数的对称中心;(2)首先通过的取值范围来确定函数的范围,再根据不等式在上恒成立,推断出,最后计算得出结果【题目详解】因为的最大值为,所以,由得所以的对称中心为;(2)因为,所以即,因为不等式在上恒成立,所以即解得,的取值范围为【题目点拨】本题考查了向量的相关性质以及三角函数相关性质,主要考查了向量的乘法、三角函数的对称性、三角恒等变换、三角函数的值域等,属于中档题.的对称中心为19、表面积为:,体积为:【解题分析】由题意知,旋转后几何体是一个圆锥,从上面挖去一个圆柱,所求旋转体的表面积由三部分组成:圆锥的底面、侧面,圆柱的侧面,旋转体的体积为圆锥的体积减去圆柱的体积,结合题中的数据,代入圆柱和圆锥的侧面积公式和底面积公式及体积公式进行求解即可.【题目详解】由题意知,旋转后几何体是一个圆锥,从上面挖去一个圆柱,且圆锥的底面半径为4,高为,圆柱的底面半径为2,高为.所求旋转体的表面积由三部分组成:圆锥的底面、侧面,圆柱的侧面.故所求几何体的表面积为:阴影部分形成的几何体的体积:【题目点拨】本题考查简单组合体的表面积和体积的求解、圆柱和圆锥的体积和表面积公式;考查运算求解能力和空间想象能力;熟练掌握旋转体的形成过程和表面积和体积公式是求解本题的关键;属于中档题.20、(1);(2)答案见解析【解题分析】(1)利用两角和的正弦公式及二倍角公式化简即可得解;(2)列表,描点,即可作出图像.【题目详解】(1)由题意所以函数的最小正周期;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版房地产买卖合同(不含装修)2篇
- 2024年度房地产开发商与施工单位合同3篇
- 河南省鹤壁市(2024年-2025年小学五年级语文)人教版综合练习((上下)学期)试卷及答案
- 租赁场地开设洗车场合同
- 简单版车位租赁合同
- 2024年度富士康物流与仓储服务合同3篇
- 解除劳动合同书的模板
- 南宁双方自愿技术咨询服务协议2024年
- 房地产开发合作协议完整版
- 《两性平等教育》课件
- 生态文明通识智慧树知到期末考试答案2024年
- 创新设计产品说明书
- 2024年重症监护护理专科护士培训试题
- 火电厂检修培训课件
- 学校文印室外包服务 投标方案(技术方案)
- 北京市各区2023年高三(上)期末语文文学文本阅读汇编
- 太原公交公司管理试题
- 健康养生新概念课件
- 学前教育实训项目
- 游泳馆消防安全制度规范与管理
- 朱竞丰精准提分
评论
0/150
提交评论