




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省阳新县兴国高级中学2024届数学高一上期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的面积为,扇形圆心角的弧度是,则扇形的周长为()A. B.C. D.2.如果函数在区间上单调递减,则的取值范围是()A. B.C. D.以上选项均不对3.若均大于零,且,则的最小值为()A. B.C. D.4.函数的零点所在的区间是()A. B.C. D.5.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.6.光线由点P(2,3)射到直线上,反射后过点Q(1,1),则反射光线所在的直线方程为A. B.C. D.7.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为A.13.25立方丈 B.26.5立方丈C.53立方丈 D.106立方丈8.已知定义域为的奇函数满足,若方程有唯一的实数解,则()A.2 B.4C.8 D.169.若则一定有A. B.C. D.10.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正数a,b满足,则的最小值为______12.在中,,,与的夹角为,则_____13.函数的最大值与最小值之和等于______14.已知角A为△ABC的内角,cosA=-4515.已知,,向量与的夹角为,则________16.已知是球上的点,,,,则球的表面积等于________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如下图所示.(1)求函数的解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.18.已知,且在第三象限,(1)和(2).19.求下列关于的不等式的解集:(1);(2)20.已知,求下列各式的值.(1);(2).21.已知二次函数的图象经过,且不等式对一切实数都成立(1)求函数的解析式;(2)若对任意,不等式恒成立,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据扇形的面积公式和弧长的计算公式,求得弧长和半径,即可求得结果.【题目详解】设扇形的半径为,弧长为.由题意:,解得,所以扇形的周长为,故选:A.【题目点拨】本题考查扇形的弧长和面积公式,属基础题.2、A【解题分析】先求出二次函数的对称轴,由区间,在对称轴的左侧,列出不等式解出的取值范围【题目详解】解:函数的对称轴方程为:,函数在区间,上递减,区间,在对称轴的左侧,,故选:A【题目点拨】本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题3、D【解题分析】由题可得,利用基本不等式可求得.【题目详解】均大于零,且,,当且仅当,即时等号成立,故的最小值为.故选:D.【题目点拨】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4、B【解题分析】根据函数零点存在性定理判断即可【题目详解】,,,故零点所在区间为故选:B5、C【解题分析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)6、A【解题分析】设点关于直线的对称点为,则,解得,即对称点为,则反射光线所在直线方程即:故选7、B【解题分析】根据题目给出的体积计算方法,将几何体已知数据代入计算,求得几何体体积【题目详解】由题,刍童的体积为立方丈【题目点拨】本题考查几何体体积的计算,正确利用题目条件,弄清楚问题本质是关键8、B【解题分析】由条件可得,为周期函数,且一个周期为6,设,则得到偶函数,由有唯一的实数解,得有唯一的零点,则,从而得到答案.【题目详解】由得,即,从而,所以为周期函数,且一个周期为6,所以.设,将的图象向右平移1个单位长度,可得到函数的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,即,即,解得,所以故选:.【题目点拨】关键点睛:本题考查函数的奇偶性和周期性的应用,解答本题的关键是由条件得到,得到为周期函数,设的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,属于中档题.9、D【解题分析】本题主要考查不等关系.已知,所以,所以,故.故选10、C【解题分析】利用扇形面积公式即可求解.【题目详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】右边化简可得,利用基本不等式,计算化简即可求得结果.【题目详解】,故,则,当且仅当时,等号成立故答案为:12、【解题分析】利用平方运算可将问题转化为数量积和模长的运算,代入求得,开方得到结果.【题目详解】【题目点拨】本题考查向量模长的求解问题,关键是能够通过平方运算将问题转变为向量的数量积和模长的运算,属于常考题型.13、0【解题分析】先判断函数为奇函数,则最大值与最小值互为相反数【题目详解】解:根据题意,设函数的最大值为M,最小值为N,又由,则函数为奇函数,则有,则有;故答案为0【题目点拨】本题考查函数奇偶性,利用奇函数的性质求解是解题关键14、35【解题分析】根据同角三角函数的关系,结合角A的范围,即可得答案.【题目详解】因为角A为△ABC的内角,所以A∈(0,π),因为cosA=-所以sinA=故答案为:315、1【解题分析】由于.考点:平面向量数量积;16、【解题分析】由已知S,A,B,C是球O表面上的点,所以,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),递增区间为;(2).【解题分析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【题目详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所以,所以,因为,所以,所以,由,可得.所以函数的单调递增区间为.(2)由题意知,函数,因为的图象关于直线对称,所以,即,因为,所以,所以.当时,,可得,所以,即函数的值域为.【题目点拨】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.18、(1),(2)【解题分析】(1)利用同角三角函数关系求解即可.(2)利用同角三角函数关系和诱导公式求解即可.【小问1详解】已知,且在第三象限,所以,【小问2详解】原式19、(1)或;(2)答案见解析.【解题分析】(1)将原不等式变形为,再利用分式不等式的解法可得原不等式的解集;(2)分、、三种情况讨论,利用二次不等式的解法可得原不等式的解集.【小问1详解】解:由得,解得或,故不等式的解集为或.【小问2详解】解:当时,原不等式即为,该不等式的解集为;当时,,原不等式即为.①若,则,原不等式的解集为或;②若,则,原不等式的解集为或.综上所述,当时,原不等式的解集为;当时,原不等式的解集为或;当时,原不等式解集为或.20、(1)2(2)【解题分析】(1)依据三角函数诱导公式化简后去求解即可解决;(2)转化为求三角函数齐次式的值即可解决.【小问1详解】原式.【小问2详解】原式.21、(1);(2).【解题分析】(1)观察不等式,令,得到成立,即,以及,再根据不等式对一切实数都成立,列式求函数的解析式;(2)法一,不等式转化为对恒成立,利用函数与不等式的关系,得到的取值范围,法二,代入后利用平方关系得到,恒成立,再根据参变分离,转化为最值问题求参数的取值范围.【题目详解】(1)由题意得:①,因为不等式对一切实数都成立,令,得:,所以,即②由①②解得:,且,所以,由题意得:且对恒成立,即对恒成立,对③而言,由且,得到,所以,经检
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年 广州花都城投广电城市服务有限公司招聘考试笔试试题附答案
- 2025年 北京市昌平区司法局人民陪审员选任考试试题附答案
- 2020-2025年中国水苏糖行业投资潜力分析及行业发展趋势报告
- 2025年中国硅芯管行业发展监测及投资前景展望报告
- 2025年中国训练用羽毛球行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国厨房食物垃圾处理器行业发展前景预测及投资战略研究报告
- 2025年环保节能型冷却塔项目投资分析及可行性报告
- 中国典当O2O行业市场调查研究及投资前景预测报告
- 2025年中国无手柄扁喷筒行业市场发展前景及发展趋势与投资战略研究报告
- 摩托车护胸项目投资可行性研究分析报告(2024-2030版)
- GB/T 4437.1-2023铝及铝合金热挤压管第1部分:无缝圆管
- 周转材料管理制度范本
- 工贸企业重大事故隐患判定标准-处罚事故案例
- 中药贴敷课件
- 混凝土电杆组立检验批质量验收记录表
- 国家开放大学《土木工程力学(本)》形考作业1-5参考答案
- 《线性代数》课程思政的案例及思考
- plc课程设计-病房呼叫系统
- 起重机改造施工方案
- 验证前风险评估精密检验仪器风险评估报告
- 检验科医院感染管理质量考核标准
评论
0/150
提交评论