




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市三原南郊中学2024届高一数学第一学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,在其定义域内单调递减的是()A. B.C. D.2.在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q3.“”是“”成立的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要4.设,,,则的大小关系为A. B.C. D.5.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是A. B.C. D.6.函数的一个单调递增区间是()A. B.C. D.7.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是A. B.C.与共线 D.8.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴9.已知集合,,则()A B.C. D.{1,2,3}10.已知角的终边经过点,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图象一定过定点P,则P点的坐标是______12.已知函数,若,则实数_________13.已知a,b,c是空间中的三条直线,α是空间中的一个平面①若a⊥c,b⊥c,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥α,b⊥α,则a⊥b;④若a∥b,a∥α,则b∥α;说法正确的序号是______14.已知函数,,那么函数图象与函数的图象的交点共有__________个15.已知函数的最大值为3,最小值为1,则函数的值域为_________.16.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知cosα=-35,且(1)求sinα(2)求sinα+6πcos18.已知函数,,.若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论(3)已知且,若.试证:.19.已知函数(1)求的最小正周期;(2)讨论在区间上的单调递增区间20.已知集合,,.若,求实数a的取值范围.21.计算:(1).(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据函数的单调性确定正确选项【题目详解】在上递增,不符合题意.在上递减,符合题意.在上有增有减,不符合题意.故选:B2、B【解题分析】定性分析即可得到答案【题目详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:P→B→Q是被“盖帽”的可能性最大的线路.故选:B3、B【解题分析】通过和同号可得前者等价于或,通过对数的性质可得后者等价于或,结合充分条件,必要条件的概念可得结果.【题目详解】或,或,即“”是“”成立必要不充分条件,故选:B.【题目点拨】本题主要考查了不等式的性质以及充分条件,必要条件的判定,属于中档题.4、B【解题分析】利用指数函数与对数函数的单调性判断出的取值范围,从而可得结果.【题目详解】,,,,故选B.【题目点拨】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.5、C【解题分析】将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.6、A【解题分析】利用正弦函数的性质,令即可求函数的递增区间,进而判断各选项是否符合要求.【题目详解】令,可得,当时,是的一个单调增区间,而其它选项不符合.故选:A7、D【解题分析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故选D.8、D【解题分析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【题目详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D9、A【解题分析】利用并集概念进行计算.【题目详解】.故选:A10、D【解题分析】由任意角的三角函数定义列式求解即可.【题目详解】由角终边经过点,可得.故选D.【题目点拨】本题主要考查了任意角三角函数的定义,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(1,4)【解题分析】已知过定点,由向右平移个单位,向上平移个单位即可得,故根据平移可得到定点.【题目详解】由向右平移个单位,向上平移个单位得到,过定点,则过定点.【题目点拨】本题考查指数函数的图象恒过定点以及函数图象的平移问题.图象平移,定点也随之平移,平移后仍是定点.12、【解题分析】分和求解即可.【题目详解】当时,,所以(舍去);当时,,所以(符合题意).故答案为:.13、③【解题分析】根据空间线面位置关系的定义,性质判断或举反例说明【题目详解】对于①,若a,b为平面α的直线,c⊥α,则a⊥c,b⊥c,但a∥b不一定成立,故①错误;对于②,若a∥α,b∥α,则a,b的关系不确定,故②错误;对于③,不妨设a在α上的射影为a′,则a′⊂α,a∥a′,由b⊥α可得b⊥a′,于是a⊥b,故③正确;对于④,若b⊂α,显然结论不成立,故④错误.故答案为③【题目点拨】本题考查了空间线面位置关系的判断,属于中档题,14、8【解题分析】在同一坐标系中,分别画出函数,及函数的图像,如图所示:由图可知,两个函数的图象共有8个交点故答案为8点睛:解决函数与方程问题的基本思想就是数形结合思想和等价转化思想,运用函数图象来研究函数零点或方程解的个数,在画函数图象时,切忌随手一画,可利用零点存在定理,结合函数图象的性质,如单调性,奇偶性,将问题简化.15、【解题分析】根据三角函数性质,列方程求出,得到,进而得到,利用换元法,即可求出的值域【题目详解】根据三角函数性质,的最大值为,最小值为,解得,则函数,则函数,,令,则,令,由得,,所以,的值域为故答案为:【题目点拨】关键点睛:解题关键在于求出后,利用换元法得出,,进而求出的范围,即可求出所求函数的值域,难度属于中档题16、(1)(4)(5)【解题分析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【题目详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【题目点拨】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4(2)-【解题分析】(1)根据三角函数的同角关系求得sinα=±(2)利用诱导公式将原式化简即可得出结果.【小问1详解】因为cosα=-35因为α是第二象限角,所以sinα=【小问2详解】sinα+6π18、(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【解题分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大【小问1详解】,即,因不等式解集为,所以,解得:,所以【小问2详解】函数在区间上的单调递增,证明如下:假设,则,因为,所以,所以,即当时,,所以函数在区间上的单调递增【小问3详解】由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【题目点拨】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数19、(1)最小正周期是(2)单调递增区间,【解题分析】(1)由三角恒等变换得,再求最小正周期;(2)整体代换得函数的增区间为,再结合求解即可.【小问1详解】解:.所以,,即最小正周期为.【小问2详解】解:令,解得,因为,所以,当时,得其增区间为;当时,得其增区间为;所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 付费团课营销活动方案
- 代号英雄活动方案
- 代表委员+活动方案
- 代账公司部门策划方案
- 以文会友活动方案
- 仲景文化宣传周活动方案
- 企业义务植树活动方案
- 企业会客厅活动策划方案
- 企业公司内部团建活动方案
- 企业参访园区活动方案
- 中华民族共同体概论课件专家版10第十讲 中外会通与中华民族巩固壮大(明朝时期)
- GB/T 19964-2024光伏发电站接入电力系统技术规定
- 铁路施工安全培训
- 保密知识培训与教育
- 地类及变化原因划分、数据库结构、森林资源变化图斑现地核实表、年度更新统计报表
- 材料科学基础-第9章-材料的亚稳态
- 2023(买卖合同)买卖合作协议正规范本(通用版)
- 【中国礼仪文化在高铁乘务中的体现及提升策略8000字(论文)】
- 国家开放大学《土木工程力学(本)》形考作业1-5参考答案
- 中国胰腺囊性肿瘤诊断指南
- 验证前风险评估精密检验仪器风险评估报告
评论
0/150
提交评论