版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省凉山2024届高一上数学期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()A. B.C. D.2.一个球的内接正方体的表面积为54,则球的表面积为()A. B.C. D.3.从2020年起,北京考生的高考成绩由语文、数学、外语3门统一高考成绩和考生选考的3门普通高中学业水平考试等级性考试科目成绩构成,等级性考试成绩位次由高到低分为A、B、C、D、E,各等级人数所占比例依次为:A等级15%,B等级40%,C等级30%,D等级14%,E等级1%.现采用分层抽样的方法,从参加历史等级性考试的学生中抽取200人作为样本,则该样本中获得B等级的学生人数为()A.30 B.60C.80 D.284.已知,则下列结论正确的是()A. B.C. D.5.若,,,则()A. B.C. D.6.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b7.已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数8.已知命题,,则为()A., B.,C., D.,9.已知角的终边经过点,则A. B.C. D.10.函数的零点所在的一个区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在上的奇函数,当时,,则时,__________12.若,,则______13.若圆上有且仅有两个点到直线的距离等于1,则半径R的取值范围是_____14.如图,已知△和△有一条边在同一条直线上,,,,在边上有个不同的点F,G,则的值为______15.若,则该函数定义域为_________16.若,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,的面积为,已知,,(1)求值;(2)判断的形状并求△的面积18.已知函数(1)试判断函数在区间上的单调性,并用函数单调性定义证明;(2)对任意时,都成立,求实数的取值范围19.求解下列问题:(1)角的终边经过点,且,求的值(2)已知,,求的值20.已知函数fx=-x2(1)求不等式cx(2)当gx=fx-mx在21.已知函数.(1)求函数的最小正周期和单调递增区间;(2)若当时,求的最大值和最小值及相应的取值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】先求得扇形的半径,由此求得扇形面积.【题目详解】依题意,扇形的半径为,所以扇形面积为.故选:B2、A【解题分析】球的内接正方体的对角线就是球的直径,正方体的棱长为a,球的半径为r,则,求出正方体棱长,再求球半径即可【题目详解】解:设正方体的棱长为a,球的半径为r,则,所以又因所以所以故选:A【题目点拨】考查球内接正方体棱长和球半径的关系以及球表面积的求法,基础题.3、C【解题分析】根据分层抽样的概念即得【题目详解】由题可知该样本中获得B等级的学生人数为故选:C4、B【解题分析】先求出,再对四个选项一一验证即可.【题目详解】因为,又,解得:.故A错误;对于B:,故B正确;对于C:,故C错误;对于D:,故D错误.故选:B5、C【解题分析】先由,可得,结合,,可得,继而得到,,转化,利用两角差的正弦公式即得解【题目详解】由题意,故故又,故,则故选:C【题目点拨】本题考查了两角和与差的正弦公式、同角三角函数关系综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题6、A【解题分析】直接判断范围,比较大小即可.【题目详解】,,,故a>b>c.故选:A.7、A【解题分析】分析:讨论函数的性质,可得答案.详解:函数的定义域为,且即函数是奇函数,又在都是单调递增函数,故函数在R上是增函数故选A.点睛:本题考查函数的奇偶性单调性,属基础题.8、A【解题分析】特称命题的否定为全称命题,所以,存在性量词改为全称量词,结论直接改否定即可.【题目详解】命题,,则:,答案选A【题目点拨】本题考查命题的否定,属于简单题.9、D【解题分析】由任意角的三角函数定义列式求解即可.【题目详解】由角终边经过点,可得.故选D.【题目点拨】本题主要考查了任意角三角函数的定义,属于基础题.10、B【解题分析】判断函数的单调性,再借助零点存在性定理判断作答.【题目详解】函数在R上单调递增,而,,所以函数的零点所在区间为.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】∵函数f(x)为奇函数∴f(-x)=-f(x)∵当x>0时,f(x)=log2x∴当x<0时,f(x)=-f(-x)=-log2(-x).故答案为.点睛:本题根据函数为奇函数可推断出f(-x)=-f(x)进而根据x>0时函数的解析式即可求得x<0时,函数的解析式12、【解题分析】利用指数的运算性质可求得结果.【题目详解】由指数的运算性质可得.故答案为:.13、【解题分析】根据题意分析出直线与圆的位置关系,再求半径的范围.【题目详解】圆心到直线的距离为2,又圆(x﹣1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,满足,即:|R﹣2|<1,解得1<R<3故半径R的取值范围是1<R<3(画图)故答案为:【题目点拨】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.14、16【解题分析】由题意易知:△和△为全等的等腰直角三角形,斜边长为,,故答案为16点睛:平面向量数量积类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cosθ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.本题就是利用几何意义处理的.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.15、【解题分析】由,即可求出结果.【题目详解】因为,所以,解得,所以该函数定义域为.故答案为【题目点拨】本题主要考查函数的定义域,根据正切函数的定义域,即可得出结果,属于基础题型.16、1【解题分析】由已知结合两角和的正切求解【题目详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【题目点拨】本题考查两角和的正切公式的应用,是基础的计算题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)是等腰三角形,其面积为【解题分析】(1)由结合正弦面积公式及余弦定理得到,进而得到结果;(2)由结合内角和定理可得分两类讨论即可.试题解析:(1),由余弦定理得,(2)即或(ⅰ)当时,由第(1)问知,是等腰三角形,(ⅱ)当时,由第(1)问知,又,矛盾,舍.综上是等腰三角形,其面积为点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.18、(1)在上单调递减,证明见解析;(2).【解题分析】(1)利用单调性定义:设并证明的大小关系即可.(2)由(1)及函数不等式恒成立可知:在已知区间上恒成立,即可求的取值范围【题目详解】(1)函数在区间上单调递减,以下证明:设,∵,∴,,,∴,∴在区间上单调递减;(2)由(2)可知在上单调减函数,∴当时,取得最小值,即,对任意时,都成立,只需成立,∴,解得:19、(1)或(2)【解题分析】(1)结合三角函数的定义求得,由此求得.(2)通过平方的方法求得,由此求得.【小问1详解】依题意或.所以或,所以或.【小问2详解】由于,所以,,由于,所以,,,所以,所以,所以,,所以20、(1)x∈(2)m≥1【解题分析】(1)由不等式fx>0的解集为x1<x<2可得x2-bx-c=0的两根是1,2,根据根系数的关系可求b=3和c=-2,代入不等式cx2【题目详解】(1)由fx>0的解集为x1<x<2,则-x2+bx+c>0的解集为x1<x<2则1+2=b1×2=-c由cx则解集为x∈(2)由gx=-x则3-m2解出m≥1【题目点拨】本题考查了三个二次的关系,(1)二次函数的图像与x轴交点的横坐标,二次不等解集的端点值,一元二次方程的根是同一个量的不同表现形式;(2)二次函数、二次不等式,二次方程常称作“三个二次”,其中的某类的问题常可以转化为另两类问题加以解决,所以三者的关系密切而重要.其中二次函数是“三个二次”的核心,通过二次函数的图像使它们贯穿一体,使得数形结合思想在此类问题的解决中十分有效21、(1)最小正周期为,(2)最小值为-1,的值为,最大值为2,的值为【解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度消防检测服务外包合同劳动厅制定2篇
- 2025年度石材行业市场调查与分析合同3篇
- 二零二五年度外墙岩棉板保温材料采购、施工及质量监管合同2篇
- 二零二五年度旅游行业SaaS解决方案销售及服务协议3篇
- 二零二五年度波形护栏安装及售后保养服务合同3篇
- 二零二五年度广告发布合同:某品牌在央视春晚广告投放3篇
- 编织红绳课程设计
- 二零二五年度建筑腻子产品进出口代理合同3篇
- 二零二五年度彩钢房租赁与投资合作协议3篇
- 课程设计怎么形容成语
- (八省联考)河南省2025年高考综合改革适应性演练 思想政治试卷(含答案)
- 综合测试 散文阅读(多文本)(解析版)-2025年高考语文一轮复习(新高考)
- 钣金设备操作培训
- 2024驾校经营权承包合同
- 快递公司与驿站合作协议模板 3篇
- 水利工程招标文件样本
- 品质管控培训质量管理与质量控制课件
- 小数加减乘除计算题大全(300题大全)-
- 2023-2024学年小学语文四年级素养检测复习试题附答案
- 露天矿山全员安全教育培训
- 共生理论视域下开放型区域产教融合实践中心建设路径研究
评论
0/150
提交评论