湖南省岳阳县一中、汨罗市一中2024届数学高一上期末学业水平测试模拟试题含解析_第1页
湖南省岳阳县一中、汨罗市一中2024届数学高一上期末学业水平测试模拟试题含解析_第2页
湖南省岳阳县一中、汨罗市一中2024届数学高一上期末学业水平测试模拟试题含解析_第3页
湖南省岳阳县一中、汨罗市一中2024届数学高一上期末学业水平测试模拟试题含解析_第4页
湖南省岳阳县一中、汨罗市一中2024届数学高一上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省岳阳县一中、汨罗市一中2024届数学高一上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.2.已知集合和关系的韦恩图如下,则阴影部分所表示的集合为()A. B.C. D.3.若函数,在区间上单调递增,在区间上单调递减,则()A.1 B.C.2 D.34.设;,则p是q()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.6.若“”是“”的充分不必要条件,则()A. B.C. D.7.设,为两个不同的平面,,为两条不同的直线,则下列命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则8.如图,以为直径在正方形内部作半圆,为半圆上与不重合的一动点,下面关于的说法正确的是A.无最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但无最小值D.既无最大值,又无最小值9.下列区间是函数的单调递减区间的是()A. B.C. D.10.函数f(x)=ln(2x)-1的零点位于区间()A.(2,3) B.(3,4)C.(0,1) D.(1,2)二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.12.正三棱锥中,,则二面角的大小为__________13.的值为_______14.若“”是真命题,则实数的最小值为_____________.15.对数函数(且)的图象经过点,则此函数的解析式________16.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限角,且,则;④是函数的一条对称轴方程以上命题是真命题的是_______(填写序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:甲6699乙79xy(1)若乙的平均得分高于甲的平均得分,求x的最小值;(2)设,,现从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求的概率;(3)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)18.已知,,求,实数a的取值范围19.(1)化简与求值:lg5+lg2++21n(π-2)0:(2)已知tanα=3.求的值.20.已知函数.(1)若,求的最大值;(2)若,求关于不等式的解集.21.已知二次函数区间[0,3]上有最大值4,最小值0(1)求函数的解析式;(2)设.若在时恒成立,求k的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据三角函数的周期变换和平移变换的原理即可得解.【题目详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.2、B【解题分析】首先判断出阴影部分表示,然后求得,再求得.【题目详解】依题意可知,,且阴影部分表示.,所以.故选:B【题目点拨】本小题主要考查根据韦恩图进行集合的运算,属于基础题.3、B【解题分析】根据以及周期性求得.【题目详解】依题意函数,在区间上单调递增,在区间上单调递减,则,即,解得.故选:B4、A【解题分析】根据特殊角的三角函数值以及充分条件与必要条件的定义可得结果.【题目详解】当时,显然成立,即若则成立;当时,,即若则不成立;综上得p是q充分不必要条件,故选:A.5、C【解题分析】根据直观图的面积与原图面积的关系为,计算得到答案.【题目详解】直观图的面积,设原图面积,则由,得.故选:C.【题目点拨】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.6、B【解题分析】转化“”是“”的充分不必要条件为,分析即得解【题目详解】由题意,“”是“”的充分不必要条件故故故选:B7、D【解题分析】根据点线面位置关系,其中D选项是面面垂直的判定定理,在具体物体中辨析剩余三个选项.【题目详解】考虑在如图长方体中,平面,但不能得出平面,所以选项A错误;平面,平面,但不能得出,所以选项B错误;平面平面,平面,但不能得出平面;其中D选项是面面垂直的判定定理.故选:D【题目点拨】此题考查线面平行与垂直的辨析,关键在于准确掌握基本定理,并应用定理进行推导及辨析.8、D【解题分析】设正方形的边长为2,如图建立平面直角坐标系,则D(-1,2),P(cosθ,sinθ),(其中0<θ<π),∵cosθ∈(-1,1),∴∈(4,16).故选D.点睛:本题考查了向量的加法及向量模的计算,利用建系的方法,引入三角函数来解决使得思路清晰,计算简便,遇见正方形,圆,等边三角形,直角三角形等特殊图形常用建系的方法.9、D【解题分析】取,得到,对比选项得到答案.【题目详解】,取,,解得,,当时,D选项满足.故选:D.10、D【解题分析】根据对数函数的性质,得到函数为单调递增函数,再利用零点的存在性定理,即可求解,得到答案.【题目详解】由题意,函数,可得函数为单调递增函数,且是连续函数又由f(1)=ln2-1<0,f(2)=ln4-1>0,根据函数零点的存在性定理可得,函数f(x)的零点位于区间(1,2)上故选D.【题目点拨】本题主要考查了函数的零点问题,其中解答中合理使用函数零点的存在性定理是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或(答案不唯一)【解题分析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【题目详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【题目点拨】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.12、【解题分析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以13、【解题分析】直接按照诱导公式转化计算即可【题目详解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°=故答案为:【题目点拨】本题考查诱导公式的应用:求值.一般采用“大角化小角,负角化正角”的思路进行转化14、1【解题分析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.15、【解题分析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式.【题目详解】由已知条件可得,可得,因为且,所以,.因此,所求函数解析式为.故答案为:.16、②④【解题分析】根据三角函数的性质,依次分析各选项即可得答案.【题目详解】解:①因为,故不存在实数,使得成立,错误;②函数,由于是偶函数,故是偶函数,正确;③若,均为第一象限角,显然,故错误;④当时,,由于是函数的一条对称轴,故是函数的一条对称轴方程,正确.故正确的命题是:②④故答案为:②④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)5(2)(3)6,7,8【解题分析】(1)由题意得,又,即可求得x的最小值;(2)利用列举法能求出古典概型的概率;(3)由题设条件能求出的可能的取值为.【小问1详解】由题意得,即.又根据题意知,,所以x的最小值此为5.【小问2详解】设“从甲、乙的4局比赛中随机各选取1局,且得分满足”为事件,记甲的4局比赛为,各局的得分分别是;乙的4局比赛为,各局的得分分别是.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种,它们是:,,,,,,,,,,,,,,,.而事件的结果有8种,它们是:,,,,,,,,∴事件的概率.【小问3详解】的所有可能取值为6,7,8.18、【解题分析】由题意利用指数函数、对数函数、幂函数的单调性,求出实数的取值范围【题目详解】解:因为,所以,所以因为,所以,所以又因为,所以.因为,所以又因为,所以.综上,实数a取值范围是19、(1);(2)-2【解题分析】(1)利用根式和对数运算求解;(2)利用诱导公式和商数关系求解.【题目详解】解:(1),,,;(2)原式,,因为,所以原式.20、(1)(2)答案见解析【解题分析】(1)由题得,利用基本不等式可求;(2)不等式即,讨论的大小可求解.【小问1详解】由,得.,,即(当且仅当时“”成立.).故的最大值为;【小问2详解】,即.当时,即时,不等式的解集为当时,即时,不等式的解集为;当时,即时,不等式的解集为.综上,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.21、(1);(2).【解题分析】(1)根据二次函数的性质讨论对称轴,即可求解最值,可得解析式(2)求解的解析式,令,则,问题转化为当u∈[,8]时,恒成立,分离参数即可求解【题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论